FMBF: Computer lab 2

This session covers the topic of cointegration. Specifically, we will conduct cointegration analysis by
using the Engle-Granger procedure and Johansen approach. Engle-Granger procedure is a

residuals-based approach, while the Johansen technique is based on VARs.

Engle-Granger procedure
We will examine the cointegration between two stock price indexes — S&P 500 and FTSE All-Share.
Data Preparation

1. Download the data file ‘FMBF Prac2.xls’ from duo. The file contains monthly price index data
on the S&P 500 and FTSE All Share from January 1965 to January 2004.

2. Open the data by EViews. In the first computer lab, we have explained how to open xIs file by
Eviews in detail. However, this data file does not include the time variable, we should manually
change the structure of the data. Specifically, ‘Basic structure’ should be ‘Dated — regular
frequency’. ‘Frequency’ should be ‘Monthly’. ‘Start date’ should be ‘1965°.
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3. Generate the logarithms of the two time series. Quick > Generate Series

Insp = log (s_p)
Inftse = log (ftse)



Make sure that the two time series are I(1)

Most financial variables are I(1) series. To conduct the EG procedure, we should firstly check

whether the two time series are I(1), by conducting unit root test.

1. Conduct unit root test for ‘Insp’. Since unit root test has been explained in Computer lab 1, this
session will not show it in detail.

Following windows show the results for the unit root test for the level and first difference of the

‘Insp’.

LNSP Workfile: EMBF PRAC?2:| m

Df_prac’

[\newlhoc]Objed]Propemes] [Print]Name]Fveeze] [Sample[Geml Shtet[Graph]Suls]I

Augmented Dickey-Fuller Unit Root Test on LNSP

Null Hypothesis: LNSP has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxiag=12)

~

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 0.332785 0.9798
Test critical values: 1% level -3.444098
5% level -2.867496
10% level -2.570005
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNSP)
Method: Least Squares
Date: 01/05/15 Time: 21:01
Sample (adjusted). 1965M02 2004M01
Included observations: 468 after adjustments
Vanable Coefficient Std. Error t-Statistic Prob
LNSP(-1) 0.000700  0.002103  0.332785 0.7294
C 0.001691 0.011620 0.145559 0.8843

I\hew]Proc]Objed[Plopmiesl [Prinl] Name]ﬁeeze] [SampleIGem[Shed]Graph]sms]l

Augmented Dickey-Fuller Unit Root Test on D(LNSP)

Null Hypothesis: D(LNSP) has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=12)

~

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -20.87728 0.0000
Test critical values: 1% level -3.444128
5% level -2.867509
10% level -2570012
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNSP,2)
Method: Least Squares
Date: 01/05/15 Time: 21:02
Sample (adjusted): 1965M03 2004M01
Included observations: 467 after adjustments
Variable Coefficient Std. Error t-Statistic Prob
D(LNSP(-1)) -0.967819 0046358 -20.87728 0.0000
Cc 0005266  0.002004 2627591 0.0089

LNSP is non-stationary, while D(LNSP) is stationary. The results suggest that the ‘Insp’ is an I(1)

variable.



2. Conduct unit root test for ‘Inftse’. Since unit root test has been explained in Computer lab 1, this
session will not show it in detail.
Following windows show the results for the unit root test for the level and first difference of the

‘Inftse’.

[Vlewl Pro:] Objed] Ploperliesn Pm\tl Name I l;leeu]—[ Samplel Gell Sheetl Graph I Sutsl I

Augmented Dickey-Fuller Unit Root Test on LNFTSE

Null Hypothesis: LNFTSE has a unit root A
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -0.794209 08194
Test critical values: 1% level -3.444098

5% level -2.867496

10% level -2570005

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNFTSE)

Method: Least Squares

Date: 01/05/15 Time: 21:01

Sample (adjusted). 1965M02 2004M01
Included observations: 468 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
LNFTSE(-1) -0.001821 0.002293  -0.794209 04275
C 0.018062 0.014580 1.238857 0.2160

[View | Proc| Object | Properties | | print| Name | Freeze | | Sample | Gene | sheet| Graph| stats 1
Augmented Dickey-Fuller Unit Root Test on D(LNFTSE)
Null Hypothesis: D(LNFTSE) has a unit root a

Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxiag=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -19.23402 0.0000
Test critical values: 1% level -3.444128

5% level -2.867509

10% level -2570012

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNFTSE,2)

Method: Least Squares

Date: 01/05/15 Time: 21:01

Sample (adjusted): 1965M03 2004M01
Included observations: 467 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
D(LNFTSE(-1)) -0.885926 0.046060 -19.23402 0.0000
C 0.005857 0.002655 2205610 0.0279

LNFTSE is non-stationary, while D(LNFTSE) is stationary. The results suggest that the ‘Inftse’
is an I(1) variable.

Overall, above results indicate that both the time series are I(1).



Generate the residuals of the cointegration regression and ensure the residuals are 1(0)

1.

Regress ‘Insp’ on ‘Inftse’ and a constant using OLS.

Quick > Estimate Equation

In the Equation Estimation window, input ‘Insp c Inftse’. ‘Method’ should be ‘LS — Least
Squares (NLS and ARMA)’.

‘Equation Estimaton x|
Spedification | Options

~Equation spedfication

Dependent variable folowed by list of regressors induding ARMA
and PDL terms, OR an explicit equation like Y=c(1) +c(2)*X.

Insp ¢ Inftse|

-Estimation settings
Method: |5 - Least Squares (NLS and ARMA) v

Sample: [ 1065M01 2004M01

[Vlew[ Pto] bjedn Print l Name I Freezen Esﬁuate] Ft;teast l Stats ] stidsl

Dependent Variable: LNSP
Method: Least Squares
Date: 01/05/15 Time: 19:50
Sample: 1965M01 2004M01
Included observations: 469

Variable Coefficient Std. Error t-Statistic Prob.
o 0504776 0.063128 7.996124 0.0000
LNFTSE 0.789932 0.009923 79.60757 0.0000
R-squared 0931368 Mean dependentvar 5.446604
Adjusted R-squared 0931221 S.D. dependentvar 0.946915
S.E. ofregression 0.248336 Akaike info criterion 0.056189
Sum squared resid 28.80030 Schwarz criterion 0.073889
Log likelihood -11.17632 Hannan-Quinn criter. 0.063153
F-statistic 6337.365 Durbin-Watson stat 0.024935
Prob(F-statistic) 0.000000




2. Save the residuals by generating a new series that equals ‘resid’.
Quick > Generate Series

Input following equation:

residuals = resid

Generate Series by Equation 5
Enter equation
residuals =resid|

Sample
1965M01 2004M01

Note:

‘resid’ is an EViews series that gets filled up each time after you conduct a regression. It shows
the residuals from the last estimation. If you want to further use the residuals (e.g. conduct ADF

test for residuals), you should save them in a new series.

There is also another way to generate residuals. In the ‘Equation” window, Proc > Make Residual

Series

(=) Equation: UNTITLED Workfile: FMBF_PRAC2:Fmbf pr.. - & X
View ProcIObject]_[PnntINameIFreezeﬂEstlmateIFore(astIStatsIR:snds]

Depi Specify/Estimate...
Meth  Forecast...
Date . .
Sam Make Residual Series...
Inclu Make Regressor Group
Make Gradient Group Error  t-Statistic Prob
= Make Derivative Group
63128 7.996124 0.0000
Make Model P9923  79.60757  0.0000
= Update Coefs from Equation
R-sc dependent var 5446604
Adju Add-ins » jependent var 0.946915
S E. urregressronr———uzeoyyo—rrare info crterion 0.056189
Sum squared resid 28.80030 Schwarz criterion 0.073889
Log likelihood -11.17632 Hannan-Quinn criter 0.063153
F-statistic 6337.365 Durbin-Watson stat 0.024935

Prob(F-statistic) 0.000000




Then, in the ‘Name for resid series’ box, input ‘residuals’ as the variable name.

(=) Equation: UNTITLED Workfile: FMBF_PRAC2:Fmbf pr.. - @ X
| view|Proc| Object| | Print | Name | Freeze | | Estimate | Forecast | stats | Resids |

Dependent Variable: LNSP
Method: Least Squares

Date: 01/05/15 Time: 23:11
Sample: 1965M01 2004M01
Included observations: 469

Varnable iiiiii iEEiiE lic Prob.
c Residual type b4 0.0000
LNFTSE | @ Ordnary 57 0.0000
—_— Standardized oK = o
R-squared G . . 5446604
Adjusted R-squal whst 0.946915
SE. of regressior r . 0.056189
Sumsquaredres  Name for resid series | Cancel | 0.073889
Log likelihood 0.063153
F-statistic residuals 0.024935

Prob(F-statistic)

We will get same results.

Conduct unit root test for residuals to examine whether they are 1(0).

Note:

The ADF test is performed but the Engle-Granger critical values should be applied. You should
check the new critical value. The software here just shows the critical value for ADF test. The

new critical values are larger than their Dickey-Fuller counterparts.

[Viewl Ploc] Objectl Properties n Ptint] Name I F:eezen SampleIGemI Sheet] Graph ] Suts]l
Augmented Dickey-Fuller Unit Root Test on RESIDUALS
Null Hypothesis: RESIDUALS has a unit root

Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxiag=12)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.523081 0.5212
Test critical values: 1% level -3.444098

5% level -2 867496

10% level -2570005

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(RESIDUALS)

Method: Least Squares

Date: 01/05/15 Time: 19.55

Sample (adjusted). 1965M02 2004M01
Included observations: 468 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
RESIDUALS(-1) -0.011149 0.007320 -1.523081 0.1284
C 0.000218 0.001810 0.120545 0.9041




Above results suggest that the residuals are non-stationary.
Note:
If the two time series are cointegrated, the residuals should be stationary. However, in our case,

residuals are non-stationary, indicating no cointegrating relation.

Construct ECM model
If appropriate (i.e. if the two series are cointegrated), build an ECM, by regressing d(Insp) on a
constant, d(Inftse) and the one-period lagged residuals that were previously saved. You can conduct
the regression by inputting following codes in Equation Estimation window:
d(Insp) c d(Inftse) residuals(-1)

or writing following codes in command window:

Is d(Insp) ¢ d(Inftse) residuals(-1)
In above codes, ‘Is’ refers to ‘least square’. In other words, it will conduct OLS regression with

dependent variable d(Insp), and independent variables, including c, d(Inftse), and residuals(-1).

However, according to the unit root test of the residuals, since the residuals are not stationary, it is
not appropriate to put the non-stationary residuals into the ECM. Therefore, we should estimate a

model containing only first differences. We can write following codes in command window:

Is d(Insp) ¢ d(Inftse)

Johansen Approach
We will use Johansen technique to examine purchasing power parity (PPP) theory. The PPP theory

can be described by following equation:
S¢ =P /P
where §; is the spot exchange rate (home currency price of a unit of foreign exchange), P; is the price
in the domestic country, and the P, is the price in the foreign country.
Take the natural logarithm of both sides of above equation:
In (S) = In(P./Pr)
Finally, we get following equation
In(Sy) = In(Py) — In (Pr)

We can use Johansen approach to test above equation.
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Please download the file ‘ppp.xls’ from DUO and use EViews to open it. The data contains monthly
observations from January 1981 to June 1996 on price indices and exchange rates for France and

Italy. The variables contained in the file are described as follows:

Variable  Description

Init log price index Italy

Infr log price index France

Inp Init-Infr

Inx log exchange rate France/Italy
cpiit consumer price index Italy
cpifr consumer price index France

We will examine the relations between ‘Inx’, ‘Init’ and ‘Infr’.

Johansen Cointegration Test

1. Select the three series ‘Inx’, ‘Init’ and ‘Infr’ and then click Quick > Group Statistics > Johansen
Cointegration Test

File Edit Object View Proc [QuickiOptions Add-ins Window Help
} Sample...

Generate Series...

Show ...
p Graph ...
i) Workfile: PPP - (C\uset  Empty Group (Edit Series) - aXx
| View | Proc| Object | | save | Freez Py , ke| Gene| sample
g:::::é_ ::g:::g: 13:2::22 : Group Statistics » Descriptive Statistics »
B ¢ Estimate Equation... Covariances
& cpifr Estimate VAR... Correlations
% ggltlé » Cross Correlogram
M Infr Johansen Cointegration Test
% :gg Granger Causality Test
& T .




Then, click on ‘OK”’
List of series, groups, andfor series expressions
Inx Init Infr

2. Choose ‘6) Summarize all 5 sets of assumptions’, and input ‘1 3’ in the ‘Lag intervals’ box.

' Cointegration Test Spedification l

Deterministic trend assumption of test Exog variables™-
Assume no deterministic trend in data: ‘
() 1) Nointercept or trend in CE or test VAR
() 2) Intercept (no trend) in CE - no intercept in VAR
Allow for Inear deterministic trend in data: Lag intervals
() 3) Intercept (no trend) in CE and test VAR 113

4) Intercept and trend in CE - no intercept in VAR
O Lag spec for differenced
Allow for quadratic deterministic trend in data: endogenous
() S) Intercept and trend in CE - intercept in VAR
@)6) Summarize al § sets of assumptions (@) MrM

Size |0.05

* Critical values may not be valid with exogenous
variables; do not indude C or Trend. O OsterwaldLenum

The differences between models 1 to 5 focus on whether an intercept or a trend or both are
included in the potentially cointegrating relationship and/or the VAR. We choose option 6 that
summarize all 5 sets of assumptions to examine whether the results are sensitive to the type of

specification used.



. We get following results. The results show the number of cointegrating vectors based on trace

statistics or max statistics. In our tests, trace statistics and max statistics lead to same results in all

the specifications of VAR models. The first and third specifications suggest one cointegrating

vector. The second and fourth specifications suggest two cointegrating vectors. Please pay

attention on the fifth specification. We have three series. If the rank of the cointegrating matrix is

three (i.e. full rank), all the series in the cointegrating space should be I(0).

" (©) Group: UNTITLED Workfile: PPP=Ppp\

View | Proc| Object | | Print| Name | Freeze | | Sample | Sheet | Stats | Spec
Johansen Cointegration Test Summary
Date: 01/06/15 Time: 22:56 £
Sample: 1981M01 1996M06
Included observations: 182
Senes: LNX LNIT LNFR
Lags interval: 110 3
Selected (0.05 level*) Number of Cointegrating Relations by Model
Data Trend None None Linear Linear Quadratic
TestType Nolintercept Intercept Intercept Intercept Intercept
No Trend No Trend No Trend Trend Trend
Trace 1 2 1 2 3
Max-Eig 1 2 1 2 3
*Critical values based on MacKinnon-Haug-Michelis (1999)
Information Criteria by Rank and Model
Data Trend None None Linear Linear Quadratic
Rank or No Intercept Intercept Intercept Intercept Intercept
No. of CEs No Trend No Trend No Trend Trend Trend
Log Likelihood by Rank (rows) and Model (columns)
0 2151.201 2151.201 2158.361 2158.361 2162674
1 2165.124 2173.629 2179877 2180.454 2180.865
e ) D460 IND 407 A0 14 1404 AR5 40K 208 240K 2490 ¥

We can use different lag intervals in the test. For example, we input ‘1 6’ in the ‘Lag intervals’

box. Try to do it, and find whether it will lead to different results.

For questions on how to decide the number of lagged terms to be used in the tests and how to

choose the optimal specification, we have explained these kinds of issues in our first computer

lab. Please check the note of our first computer lab.
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Although we have inconclusive results on the number of cointegrating vectors, the results are in

favor that the three series are cointegrated.

4. If we want to check more detailed information for particular test specification, we can just select

one of the options rather than select the summary. For example, we select option ‘3) Intercept (no
trend) in CE and test VAR’.

"Johansen Cointegration Test X

Cointegration Test Spedfication _

Deterministic trend assumption of test Exoqg variables™®
Assume no deterministic trend in data: 4

() 1) No intercept or trend in CE or test VAR

() 2) Intercept (no trend) in CE - no intercept in VAR

Allow for inear deterministic trend in data: Lag intervals
@) 3) Intercept (no trend) in CE and test VAR 13
4) Intercept and trend in CE - no intercept in VAR
O Lag spec for differenced
Allow for quadratic deterministic trend in data: endogenous
()5) Intercept and trend in CE - intercept in VAR
E— Critical Values
()6) Summarize al 5 sets of assumptions (@) MHM
Size 0.05
* Critical values may not be valid with exogenous N
variables; do not indude C or Trend. (© OsterwaldLenum
OK Cancel

5. EViews generate a very large quantity of output. It shows the detailed information on trace test

and max test. It also shows the cointegrating equations.
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Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No.of CE(s)  Eigenvalue Statistic Critical Value  Prob.**
None * 0.210564 53.07868 29.79707 0.0000
At most 1 0.045930 10.04729 1549471 02771
At most 2 0.008154 1.490050 3.841466 0.2222
Trace testindicates 1 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value  Prob.*™
None * 0.210564 4303138 21.13162 0.0000
At most 1 0.045930 8557245 14.26460 0.3248
Atmost 2 0.008154 1.490050 3.841466 02222

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b™*S11*b=l):

LNX LNIT LNFR
7.400775 -54.20124 101.9697
-15.39709 57.19850 -83.44228
-6.329392 -13.72273 2570504

Unrestricted Adjustment Coefficients (alpha):

D(LNX) -0.002410 0.002096 0.001421
D(LNIT) -0.000576 -0.000450 0.000106
D(LNFR) -0.000881 9.16€E-05 -3.48E-05
1 Cointegrating Equation(s): Log likelihood 2179877
Normalized cointegrating coefficients (standard error in parentheses)
LNX LNIT LNFR
1.000000 -7.323725 1377825
(0.91587) (1.72219)
Adjustment coefficients (standard error in parentheses)
D(LNX) -0.017838
(0.01081)
D(LNIT) -0.004262
(0.00150)
D(LNFR) -0.006520
(0.00102)
2 Cointegrating Equation(s): Log likelihood 2184.155
Normalized cointegrating coefficients (standard error in parentheses)
LNX LNIT LNFR
1.000000 0.000000 -3.185188
(0.65140)
0.000000 1.000000 -2.316230
(0.10832)
Adjustment coefficients (standard error in parentheses)
D(LNX) -0.050117 0.250551
(0.02481) (0.11445)
D(LNIT) 0.002661 0.005493
(0.00241) (0.01574)
D(LNFR) -0.007930 0.052987
(0.00235) (0.01083)




VECM specification for Johansen tests
To examine the entire VECM model, we should operate as follows.

1. In the ‘Johansen Cointegration Test” window, click Proc > Make Vector Autoregression

g

(6] Group: UNTITLED Workfile: PPP:Ppp
| View I Ploc] Objedn PrintI Nanel Flem" Sanplel Sheetl Sutsl Spec]
Make Equation... ration Test
Date Make Factor... A~
ﬁ\?jmu Make System...
Tren  Make Vector Autoregression...
Seri¢

Lags Resample...

Unre Make Principal Components...

= Make Whitened...
Hy . 0.05
Nc Make Distribution Plot Data... Critical Value  Prob.**
Add-ins 4 29.79707 0.0000
ATMOSTT 0045930 1004729 15.49471 0.2771
At most 2 0.008154 1.490050 3.841466 0.2222

Trace testindicates 1 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value  Prob.*"
AMann * N21NERA A2 N2420 71 42182 N _nnnn N

2. In ‘Basics’ tab, select ‘Vector Error Correction” as ‘“VAR Type’. Input ‘1 3’ in the ‘Lag Intervals
for D(Endogenous)’ box.

Bascs | Cointegration | VEC Restrictions |
~VAR Type : -Endogencus Variables
(O Unrestricted VAR nx kit Infr
(®) Vector Error Correction
(O Bayesian VAR
~Estimation Sample - -Lag Intervals for D( Endogenous ):-
| 1981m01 1996m06 13
~Exogenous Variables
Do NOT indude C or Trend in VEC's
oKk || cacel |
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3. Click ‘Cointegration’ tab.

Input ‘1’ in the ‘Number of cointegrating’ box. In this case, we allow for only one cointegrating

relationship.

Select option ‘3) Intercept (no trend) in CE and VAR’. In other words, we construct a VECM

model with constant (no trend) in cointegrating space and VAR.

VAR Specification x

Basics Contegrabon  VEC Restrictions
Rank
Number of contegrating 1

Deterministic Trend Spedfication

No trend in data

() 1) Nointercept or trend in CE or VAR

(0 2) Intercept (no trend) in CE - no intercept in VAR
Linear trend in data

(@ 3) Intercept (no trend) in CE and VAR

() 4) Intercept and trend in CE - no trend in VAR

Quadratic trend in data
()5) Intercept and trend in CE- linear trend in VAR

4. Finally, we get following output. It shows the whole VECM model.
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[ Vector Error Correction Estimates
Standard errors in () & t-statistics in [ ]
Cointegrating Eq: CointEq1
LNX(-1) 1.000000
LNIT(-1) -7.323725
(0.91587)
[-7.99650]
LNFR(-1) 13.77825
(1.72219)
[8.00041]
Cc -34.95677
Error Correction: D(LNX) D(LNIT) D(LNFR)
CointEq1 -0.017838 -0.004262 -0.006520
(0.01081) (0.00150) (0.00102)
[-1.64947] [-2.84163] [-6.39890)
D(LNX(-1)) 0.025798 -0.001177 0.005631
(0.07696) (0.01067) (0.00725)
[0.33520] [-0.11023] [0.77659)
D(LNX(-2)) -0.060404 0.008394 0.011538
(0.07525) (0.01044) (0.00709)
[-0.80273)] [0.80438] [1.62732)
D(LNX(-3)) 0.090001 0.001448 -0.003868
(0.07574) (0.01050) (0.00714)
[1.18824)] [0.13784] [-0.54202)
D(LNIT(-1)) 0536944 0284263 -0.132223
(0.57352) (0.07954) (0.05404)
[0.93622) [3.57395] [-2.44691)
D(LNIT(-2)) -1.231853 -0.005679 0.085820
(0.60718) (0.08420) (0.05721)
[-2.02883) [-0.06745) [1.50016)
D(LNIT(-3)) 0.140394 0.030498 -0.051692
(0.60207) (0.08350) (0.05673)
[0.23318] [0.36526] [-0.91125)
D(LNFR(-1)) -0.520290 0.211629 0.357069
(0.76037) (0.10545) (0.07164)
[-0.68426] [2.00692] [4.98414)
D(LNFR(-2)) 0.023461 -0.141004 -0.213130
(0.78766) (0.10923) (0.07421)
[0.02979] [-1.29166] [-2.87190)
D(LNFR(-3)) -1.702787 0.067836 0.117000
(0.72512) (0.10056) (0.06832)
[-2.34830] [0.67458] [1.71255)
Cc 0.013197 0.003525 0.003165
(0.00604) (0.00084) (0.00057)
[2.18657] [4.21122] [5.56611]
R-squared 0.084431 0527671 0.689828
Adj. R-squared 0.030889 0.500049 0.671689
Sum sq. resids 0.066450 0.001278 0.000590
SE. equation 0.019713 0.002734 0.001857
F-statistic 1576910 19.10356 38.03063
Log likelihood 4620468 821.6012 891.9563
Akaike AIC -4 956558 -8.907706 -9.680839
Schwarz SC -4.762909 -8.714057 -9.487190
Mean dependent 0.001811 0.005890 0.003555
S.D. dependent 0.020025 0.003866 0.003241
Determinant resid covariance (dof adj.) 9.56E-15




