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Dataset

• Download and open garch.xls as well as FMBF Practical 3.pdf file

• Dataset: Change ‘dy’ to ‘jy’



Generate new return variables

Quick > generate series > type:

• rbp=dlog(bp)

• rcd=dlog(cd)

• rdm=dlog(dm)

• rjy=dlog(jy)

• rsf=dlog(sf)



Produce figures

• click rdm > right click > open > view > graph > ok

• Check other variables



Identify ARMA

• quick > series stat > 
correlogram > rdm > 
conclusion: arma (1,1)



Run AR(1)

• quick > estimate equation > 
rdm c ar(1) > options > cls > 
ok



Change the optimisation methods 

• From BFGS to Eviews Legacy

• To get the same results with 
the handout



ARCH Effects H0: no arch effect, i = 0

H1: there is arch effect, i 0

• if p-value < 5% 
• = reject H0 = there is arch effect

ARCH (q) 

yt = 1 + 2x2t + ... + kxkt + ut ,  ut  N(0,     )

Where 

In this case, q (lags)=6

t
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Weakness of ARCH

ARCH (q) 

yt = 1 + 2x2t + ... + kxkt + ut ,  ut  N(0,     )

Where 

• How many q (lags) do we need? Might be very large

• Consequently, the variance could be negative which means it would 
violate the non-negativity constraints.

• Solution: GARCH (1,1): or in general GARCH (p,q)
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GARCH (1,1)
• GARCH (1,1):



Weakness of Basic GARCH

GARCH (p,q) 

yt = 1 + 2x2t + ... + kxkt + ut ,  ut  N(0,     )

Where 

• Cannot capture leverage effects: asymmetric shocks

• Solutions: 
• GJR-GARCH and E-GARCH 

t
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2. The GJR Model

where It-1 = 1 if ut-1 < 0

= 0 otherwise

• For a leverage effect, we would see  > 0.

• We require 1 +   0 and 1  0 for non-
negativity.
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Leverage effects

• GJR-GARCH (1,1):

• Using monthly S&P 500
returns, Dec 1979- Jun 1998

• Estimating a GJR model,
Brooks obtain the following
results:
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Source: Brooks, Lecture Slides: Volatility and Correlation, p.32-3
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1. The EGARCH Model

- Because t
2 is in log, its value will always be

positive.

- The leverage effect is captured by  , where 
<0.

- Because if Ut-1<0 and  <0, would be higher
than when Ut-1>0.

-  shows the relationship between volatility
and returns
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3. GARCH-in Mean

•  = risk premium.

• 3 types GARCH-in Mean:
1. Std. dev

2. Variance

3. Log(var)

yt =  + t-1+ ut   , ut  N(0,t
2
)  
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3.1 GARCH-in Mean: Std. dev

•  = risk premium.

• 3 types GARCH-in Mean:
1. Std. dev

yt =  + t-1+ ut   , ut  N(0,t
2
)  
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3.2 GARCH-in Mean: Variance

•  = risk premium.

• 3 types GARCH-in Mean:
2. Variance

yt =  + t-1+ ut   , ut  N(0,t
2
)  
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3.3 GARCH-in Mean: Log(Var)

•  = risk premium.

• 3 types GARCH-in Mean:
3. Log(var)

yt =  + t-1+ ut   , ut  N(0,t
2
)  

t
2
 = 0 + 1

2

1tu +t-1
2
 



Data availability: 
2 Jan 1980-21 May 1987

2 Jan 
1980

21 May 
1986

21 May 
1987

Future

Estimation 
period

Validation 
period

Forecast into 
future

Out-of-sample

In-sample

Out-of-sample: use some observations (e.g. 
2/01/1980-21/05/1986) to estimate the 
model, then test it in the validation period 
(21/05/1986-21/05/1987)

In-sample: use all observations (e.g. 
2/01/1980-21/05/1987) to estimate the 

model, then test it in the validation period 
(21/05/1986-21/05/1987).



Dynamic Forecast

• The mean

• The conditional variance
• The forecasts converge as the 

horizon increases

• RMSE: the difference 
between the actual values 
and forecasts, the lower-the 
better.



Static Forecast (rolling one-day ahead)

• The mean

• The conditional variance

• More volatility due to one-
step ahead forecasts.
• See the mean and conditional 

variance

• RMSE: the difference 
between the actual values 
and forecasts, the lower-the 
better.



Summary: (G)ARCH Models

I. ARCH: how many lags (q) do we need?

II. Basic GARCH (1,1): cannot capture the leverage effects

III. E-GARCH: allow to capture the leverage effects

IV. GJR-GARCH: allow to capture the leverage effects

V. GARCH-M (in mean): the return partly determined by its risk.
1. Std. dev

2. Variance

3. Log(var)


