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FMBF: Computer lab 1 
 

Introduction  
There are four computer labs for the FMBF module. They will be organized as follows: 

Practical 1: ARMA modeling and unit root test 

Practical 2: Cointegration test 

Practical 3: ARCH/GARCH modeling 

Practical 4: Review 

 

ARMA Modeling 
We will firstly load a dataset and build ARMA models by following the Box–Jenkins approach. The 

Box–Jenkins approach involves three steps: 

1. Identification 

2. Estimation 

3. Diagnostic checking 

 

Data Preparation 

1. We will use monthly data on the price of British Airways from 1996 to 2002 (Please download 

the file ‘BA.xls’ from DUO). 

2. Open the file in EViews by following steps: 

(1) File > Open > Foreign Data as Workfile 
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(2) Select the file ‘BA.xls’, and following window will appear. Click ‘Next’. 

 
(3) Since the first 6 rows of the table are header lines, input 6 in the ‘Header lines’ box.  
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Then, change the variable names to ‘date’ and ‘price’. Please pay attention that the ‘Data type’ 

should be ‘Date’ and ‘Number’, respectively. 
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(4) Since the EViews has correctly recognized the ‘Structure of the Data to be Imported’, keep 

the ‘Basic structure’ as the ‘Dated – specified by date series’. Click ‘Finish’, and finally we 

will get the ‘Workfile: BA’. 
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3. Generate two series – ‘lnprice’ (natural logarithm of price) and ‘return’ (first difference of 

lnprice). We calculate return by following equation: 

𝑟𝑒𝑡𝑢𝑟𝑛 = ln 𝑝𝑟𝑖𝑐𝑒! − ln  (𝑝𝑟𝑖𝑐𝑒!!!) 

 

(1) Quick > Generate Series 

 

 

(2) Enter equation to generate ‘lnprice’: 

𝑙𝑛𝑝𝑟𝑖𝑐𝑒 = log  (𝑝𝑟𝑖𝑐𝑒) 
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(3) Enter equation to generate ‘return’: 

𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑑𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒) 

 

 

 

 

Box–Jenkins approach 
Identification 

ACF/PACF Plots can be used to identify the order of ARMA(p,q) model. 

We can draw ACF/PACF plots by following steps: 

1. Quick > Series > Correlogram 
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2. Input the name of series that you want to test. If you want to draw the ACF/PACF plots for 

‘lnprice’, please input ‘lnprice’. You can also input ‘log(price)’, and you will get the same 

results. 

 

3. Choose the ‘level’ of the variable. If you choose the ‘1st difference’, it will show the results of 

‘d(lnprice)’. In this case, return=d(lnprice)=dlog(price) 

 
4. Finally, we will get the ACF/PACF plots for ‘lnprice’. 

 
The results suggest that the series ‘lnprice’ is a non-stationary process (random walk: 𝑦! =

𝑦!!! + 𝜀!). Can you explain the reason for this? 
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5. We can also draw the ACF/PACF plots for ‘return’ by repeating above process. 

 
Nearly all the ACF/PACF are insignificant. Only the ACF and PACF at the lag five are 

significant (they are outside the dotted lines in the graph). Is there any particular ARMA(p,q) 

models suggested by the ACF/PACF plots? 

 

 

Note: 

Sometimes, it is difficult to use ACF/PACF plots to choose the model order. Information criteria, 

such as AIC, SBIC and HQIC, can be used to specify the model. Specifically, the optimal 

specification should minimize the value of an information criterion. Information criteria can be got 

after you estimate the ARMA(p,q) model. 
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Estimation 

Suppose that ARMA models from order (0,0) to (5,5) are plausible for the stock returns of BA. In 

EViews, this can be done by separately estimating each of the models and noting down the value of 

the information criteria in each case. We can construct ARMA(p,q) model by following steps: 

1. Quick > Estimate Equation 

 
2. For example, if we want to construct a AR(1) model, we should type ‘return c AR(1)’ in the 

‘Specification’ tab of ‘Equation Estimation’ window. ‘Method’ should be ‘LS – Least Squares 

(NLS and ARMA)’. We can also type ‘dlog(price) c AR(1)’, and we will get the same results.  
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3. Consequently, we get following model, and the result window show the information criteria. 

 
4. If we want to construct a ARMA(5,5) model, we should type ‘return c AR(1) AR(2) AR(3) AR(4) 

AR(5) MA(1) MA(2) MA(3) MA(4) MA(5)’ in the ‘Specification’ tab of ‘Equation Estimation’ 

window. Subsequently, we can get following results. 
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5. In above ARMA(5,5) model, only constant (C), AR(5) and MA(5) components are significant, 

other variables are insignificant. Wald test can be used to examine whether we can exclude theses 

variables in the model. In the ‘Equation’ window, View > Coefficient Diagnostics > Wald 

Test-Coefficient Restrictions.  
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In the ‘Wald Test’ window, input the variables that we want to test. For example, if we want to 

test whether AR(1), AR(2), AR(3), AR(4), MA(1), MA(2), MA(3), and MA(4) components are 

jointly equal to zero, we should input ‘c(2)=c(3)=c(4)=c(5)=c(7)=c(8)=c(9)=c(10)=0’. 

 

Following result of Wald Test are insignificant. In other words, it cannot reject the null 

hypothesis that above coefficients are jointly equal to zero. Therefore, we can exclude these 

variables in the regressions. 
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6. According to above results, we construct the ARMA model only include constant, AR(5) and 

MA(5) components. Type ‘return c AR(5) MA(5)’ in the ‘Equation Specification’ window.  

 
Then, we get following model. 
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Diagnostic checking 

We can examine whether the model constructed is adequate by two methods - overfitting and 

residual diagnostics.  

 

Overfitting refers to fitting a larger model than the model identified in first stage. The model is 

adequate, if any extra components added to the ARMA model are insignificant.  

 

Residual diagnostics refers to checking whether the residuals are free from autocorrelation. The 

model is adequate, if autocorrelations of residuals are zero. The Ljung–Box tests (Q-statistics) can be 

used. In Eviews, Q-statistics can be conducted by following steps: 

1. In the Equation window, View > Residual Diagnostics > Correlogram – Q-statistics 

 

2. Then, input the lags to include. For ARMA(p,q) model, the number of lags to include should be 

greater than p+q+1 

 
 

Note: 

The residuals of an adequate model should be approximately white noise for which the 

autocorrelations are zero. 
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If the residuals are close to a white noise all ACF and PACF should be approximately within two 

standard error bounds ±2/ 𝑇 

To check the overall acceptability of the residual autocorrelations, the Ljung-Box (1978) test 

statistic maybe used: 

𝑄! = 𝑇(𝑇 + 2)
1

𝑇 − 𝑘

!

!!!

𝜌!! 

Here, the 𝜌! is the estimated autocorrelation coefficients of the residuals and k is the number of 

lags examined. 

For an ARMA(p,q) process the statistic Qk is approximately Chi-squared distributed with 

k-p-q-1 degrees of freedom. 

Note that the model only makes sense if k>p+q+1 

 

The null hypothesis and alternative hypothesis of Ljung–Box test: 

H0: The data are independently distributed. 

Ha: The data are not independently distributed. 

 

Forecasting 

After we determine the proper model, we can make forecasting based on it.  

In Equation window, click ‘Forecast’ 
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Finally, we get the results on forecasting. 

 
We will discuss forecasting further in computer lab 3. 
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Unit Root Test 
In the second part of this session, we will conduct unit root tests by using annual data on the 

price/earnings ratio of the S&P Composite Index over the period 1871–2002 (see Verbeek 2004, 

p.274). 

 

Data Preparation 

1. Please download the file ‘PE.xls’ from DUO, and use EViews to open it. 

Click ‘Next’ 

 

2. Give the first column of data a variable name ‘date’. However, the ‘Data type’ is recognized as 

the ‘Character’. We should adjust the data type later. Other variables (PRICE, EARNINGS, PE, 

and LOGPE) are correctly identified by the EViews. 
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3. Adjust the ‘Structure of the Data to be Imported’. For ‘Basic structure’, we should choose ‘Dated 

– regular frequency’. For ‘Frequency’, we should choose ‘Annual’. For ‘Start date’, we should 

input ‘1871’. 

 

4. Generate a new series ‘dlogpe’. Enter following equation: 

𝑑𝑙𝑜𝑔𝑝𝑒 = 𝑑(𝑙𝑜𝑔𝑝𝑒) 
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Line Graph 

We draw the line graph for the two series – logpe (level) and dlogpe (first difference). 

1. Press ‘control’ to select the two series, and right click. Select ‘Open > as Group’. 

 

We will get following ‘Group’ window. 
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2. In Group window, View > Graph 

 
3. Select ‘Basic type’ and ‘Line&Symbol’. 
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4. Finally, we get following graph 

 
Based on above graph, which series do you think is a stationary process – logpe or dlogpe? 

 

 

In fact, to examine whether a process is stationary, we should conduct unit root test, such as 

Augmented Dickey–Fuller test (ADF), Phillips–Perron test, and Kwiatkowski–Phillips–Schmidt–

Shin tests (KPSS test is a stationarity test). 

 

Augmented Dickey–Fuller test 

1
1

k

t t i t i t
i

y y t yδ ψ γ β ε− −
=

Δ = + + + Δ +∑ 	
   	
    (Equation 1) 

H0: 0ψ =  i.e. unit root 

Ha: 0ψ < 	
   i.e.	
  stationarity 

The choice of a value of k is a specification issue. In general, information criteria like AIC or SBIC 

are used to determine a value for k. 
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1. Quick > Series Statistics > Unit Root Test 

 

3. Test type: Augmented Dickey-Fuller 

Test for unit root in: level 

Include in test equation: Intercept 

Lag length: Automatic selection: Schwarz Info Criterion Maximum lags: 12 

 
By choosing these options, we will conduct ADF test for ‘logpe’ with up to 12 lags of the 

dependent variable (dlogpe). We will include a constant in the test equation. The EViews will use 

Schwarz Info Criterion (also known as SBIC or BIC) to determine the optimal lag length (the 

value of k in Equation 1 shown above) in the ADF test.  
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4. We get following results. The p-value of ADF test is 0.1021 (insignificant). The result cannot 

reject the null hypothesis that ‘logpe’ has a unit root. In other words, the ‘logpe’ is non-stationary. 

The results window also shows the detailed information on test equation. The optimal 

specification based on SBIC does not include the lagged term of dependent variable.  

Note: In the ADF test of ‘logpe’, the dependent variable is d(logpe). 
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5. We can also use other information criteria to determine the optimal specification. Please check 

whether it will lead to different results. 

 

6. We can also specify a test model with given number of lags of dependent variables in the 

regression equation. 

For example, we construct an ADF equation with 6 lagged terms. 
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We get following results. The p-value is 0.3668, which cannot reject the null hypothesis of unit 

root, confirming that ‘logpe’ is non-stationary. The results also show the detailed information on 

test equation.  
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7. We repeat the test for ‘dlogpe’ (the first difference of ‘logpe’). We can directly conduct ADF test 

for ‘dlogpe’. Alternatively, we can conduct ADF test for ‘logpe’, and choose the option ‘Test for 

unit root in: 1st difference’. We will get the same results. 

Following table show the results of ADF test for ‘dlogpe’. 

 

The p-value is 0.000 (highly significant), which reject the null hypothesis that ‘dlogpe’ has a unit 

root. In other words, ‘dlogpe’ is stationary.  

 

According to above results, level of the series (‘logpe’) is non-stationary, but the first difference of 

the series (‘dlogpe’) is stationary. The results suggest that the variable ‘logpe’ is a I(1) process.  
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Other Unit Root/Stationarity Tests 

In the ‘Unit Root Test’ window, we can select different test type, such as Phillips–Perron and KPSS 

test show as follows. 
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Please pay attention that the KPSS is a stationarity test that is different from unit root test like ADF 

test and Phillips–Perron test. Specifically, the null hypothesis for the KPSS test is that the variable is 

stationary. 

 

Note:  

In different tests, we always face a question about how to determine the number of lag terms in the 

test equation. We can decide the number based on data frequency. For example, we can use 4 and 12 

lags for quarterly data and monthly data, respectively. More importantly, we can use information 

criteria, such as SBIC and AIC, to choose the optimal specification. The optimal specification should 

minimize the value of an information criterion. 

 

 

Further Exercise 

1. Load the data ‘FTSEDATA.xls’ that is on duo. This contains monthly data for the FTSE 100 and 

ALL SHARE from 1985.  

2. Create logarithms of the two indices, naming them LFTSE100 and LFTALLSH.  

3. Plot the series then test for stationarity adding an appropriate number of lags.  

4. Create the first difference of LFTSE100 and LFTALLSH and test for stationarity after plotting 

the differenced series.  
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5. Come to conclusions about the presence of a unit root in the two series. 

6. Construct ARMA models for the two series following the Box–Jenkins approach. 
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