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Abstract

In these notes we present a survey of the theory of univariate and multivari-
ate GARCH models. ARCH, GARCH, EGARCH and other possible nonlinear
extensions are examined. Conditions for stationarity (weak and strong) are
presented. Inference and testing is presented in the quasi-maximum likelihood
framework. Multivariate parameterizations are examined in details.
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Chapter 1

UNIVARIATE ARCH MODELS

1.1 Empirical regularities

GARCH models have been developed to account for empirical regularities in ¯nancial
data. Many ¯nancial time series have a number of characteristics in common.

1. Asset prices are generally non stationary. Returns are usually stationary. Some
¯nancial time series are fractionally integrated.

2. Return series usually show no or little autocorrelation.

3. Serial independence between the squared values of the series is often rejected
pointing towards the existence of non-linear relationships between subsequent
observations.

4. Volatility of the return series appears to be clustered.

5. Normality has to be rejected in favor of some thick-tailed distribution.

6. Some series exhibit so-called leverage e®ect, that is changes in stock prices tend
to be negatively correlated with changes in volatility. A ¯rm with debt and
equity outstanding typically becomes more highly leveraged when the value of
the ¯rm falls.This raises equity returns volatility if returns are constant. Black,
however, argued that the response of stock volatility to the direction of returns
is too large to be explained by leverage alone.

7. Volatilities of di®erent securities very often move together.

1.2 Why do we need ARCH models?

Wold's decomposition theorem establishes that any covariance stationary f g may
be written as the sum of a linearly deterministic component and a linearly stochastic
with a square-summable, one-sided moving average representation. We can write,

= +
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is linearly deterministic and is a linearly regular covariance stationary stochastic
process, given by

= ( )

( ) =
1X
=0

1X
=0

2 1 0 = 1

[ ] = 0

[ ] =

½
2 1 =
0

The uncorrelated innovation sequence need not to be Gaussian and therefore need not
be independent. Non-independent innovations are characteristic of non-linear time
series in general and conditionally heteroskedastic time series in particular.

Now suppose that is a linear covariance stationary process with i.i.d. in-
novations as opposed to merely white noise. The unconditional mean and variance
are

[ ] = 0

£
2
¤
= 2

1X
=0

2

which are both invariant in time. The conditional mean is time varying and is given
by

[ j© ¡1 ] =
1X
=1

¡

where the information set is © ¡1 = f ¡1 ¡2 g. This model is unable to capture
the conditional variance dynamics. In fact, the conditional variance of is constant
at £

( ¡ [ j© ¡1 ])
2 j© ¡1

¤
= 2

This restriction manifests itself in the properties of the k-step-ahead conditional pre-
diction error variance. The k-step-ahead conditional prediction is

[ + j© ] =
1X
=0

+ ¡
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and the associated prediction error is

+ ¡ [ + j© ] =
¡1X
=0

+ ¡

which has a conditional prediction error variance

£
( + ¡ [ + j© ])2 j© ¤ = 2

¡1X
=0

2

As ! 1 the conditional prediction error variance converges to the unconditional

variance 2
1P
=0

2. For any , the conditional prediction error variance depends only

on and not on © . In conclusion, the simple "i.i.d. innovations model" is unable to
take into account the relevant information which is available at time .

1.3 The ARCH(q) Model

Let f ( )g denote a discrete time stochastic process with conditional mean and
variance parametrized by a the ¯nite dimensional vector £ µ R , where 0 denotes
the true value. We assume, for the moment, that ( 0) is a scalar.

¡1 [¢] denotes the conditional expectation when the conditioning set is com-
posed by the past values of the process along with other information available at time
¡ 1 (denoted by © ¡1):

¡1 [¢] ´ [¢ j© ¡1 ]

analogously for the conditional variance:

¡1 [¢] ´ [¢ j© ¡1 ]

De¯nition 1 (Bollerslev, Engle and Nelson [5]) The process f ( 0)g follows an
ARCH model if

¡1 [ ( 0)] = 0 = 1 2 (1.1)

and the conditional variance

2 ( 0) ´ ¡1 [ ( 0)] = ¡1
£
2 ( 0)

¤
= 1 2 (1.2)

depends non trivially on the -¯eld generated by the past observations: f ¡1 ( 0) ¡2 ( 0) g

Let f ( 0)g denote the stochastic process of interest with conditional mean
( 0) ´ ¡1 ( ) = 1 2 (1.3)
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By the time convention, both ( 0) and
2 ( 0) are measurable with respect to the

time ¡ 1 information set.¤ De¯ne the f ( 0)g process by
( 0) ´ ¡ ( 0) (1.4)

It follows from eq.(1.1) and (1.2), that the standardized process

( 0) ´ ( 0)
2 ( 0)

¡1 2 = 1 2 (1.5)

will have conditional mean zero ( ¡1 [ ( 0)] = 0) and a time invariant conditional
variance of unity.

We can think of ( 0) as generated by

( 0) = ( 0)
2 ( 0)

1 2

where 2 ( 0) is unbiased estimator of
2 ( 0). Let's suppose ( 0) » (0 1) and

independent of 2 ( 0)

¡1
£
2
¤
= ¡1

£
2
¤

¡1
£
2
¤
= ¡1

£
2
¤

because 2 j© ¡1 » 2
(1). The median of a

2
(1) is 0.455 so Pr

©
2 1

2
2
ª

1
2
.

If the conditional distribution of is time invariant with a ¯nite fourth mo-
ment, the fourth moment of is£

4
¤
=

£
4
¤ £

4
¤ ¸ £

4
¤ £

2
¤2
=

£
4
¤ £

2
¤2

£
4
¤ ¸ £

4
¤ £

2
¤2

by Jensen's inequalityy. The equality holds true for a constant conditional variance
only. If » (0 1), then [ 4] = 3, the unconditional distribution for is
therefore leptokurtic £

4
¤ ¸ 3

£
2
¤2£

4
¤ £

2
¤2 ¸ 3

¤Andersen distinguishes between deterministic, conditionally heteroskedastic, conditionally
stochastic and contemporaneously stochastic volatility process. The volatiltiy process is determinis-
tic if the information set ( -¯eld), which we denote with ©, is identical to the -¯eld of all random
vectors in the system up to and including time = 0, the process is conditionally heteroskedastic if
© contains information available and observable at time ¡1, the process is conditionally stochastic
if © contains up to period ¡ 1 whereas the volatility process is contemporaneously stochastic if the
information set © contains the random vectors up to period .

yJensen's inequality:

[ ( )] · ( [ ])

if (¢) is concave
[ ( )] ¸ ( [ ])

if (¢) is convex.
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The kurtosis can be expressed as a function of the variability of the conditional
variance. In fact, if j© ¡1 » (0 2)

¡1
£
4
¤
= 3 ¡1

£
2
¤£

4
¤
= 3

h
¡1
¡
2
¢2i ¸ 3© £

¡1
¡
2
¢¤ª2

= 3
£ ¡

2
¢¤

£
4
¤¡ 3 £ ¡

2
¢¤2

= 3
n

¡1
£
2
¤2o¡ 3© £

¡1
¡
2
¢¤ª2

£
4
¤
= 3

£ ¡
2
¢¤2
+ 3

n
¡1
£
2
¤2o¡ 3© £

¡1
¡
2
¢¤ª2

=
[ 4]

[ ( 2)]
2 = 3 + 3

n
¡1 [ 2]

2
o
¡ f [ ¡1 ( 2)]g2

[ ( 2)]
2

= 3 + 3
f ¡1 [ 2]g
[ ( 2)]2

= 3 + 3
f 2g

[ ( 2)]2

Another important property of the ARCH process is that the process is conditionally
serially uncorrelated. Given that

¡1 [ ] = 0

we have that with the Law of Iterated Expectations:

¡ [ ] = ¡ [ ¡1 ( )] = ¡ [0] = 0

This orthogonality property implies that the f g process is conditionally uncorre-
lated:

¡ [ + ] = ¡ [ + ]¡ ¡ [ ] ¡ [ + ] =

= ¡ [ + ] = ¡ [ + ¡1 ( + )] =

= [ + ¡1 [ + ]] = 0

The ARCH model has showed to be particularly useful in modeling the temporal
dependencies in asset returns.

The ARCH model introduced by Engle (Engle ([9])) is a linear function of
past squared disturbances:

2 = +
X
=1

2
¡ (1.6)

In this model to assure a positive conditional variance the parameters have to satisfy
the following constraints: 0 e 1 ¸ 0 2 ¸ 0 ¸ 0. De¯ning

2 ´ 2 ¡
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where ¡1 ( ) = 0 we can write (1.6) as an AR(q) in 2:

2 = + ( ) 2 +

where ( ) = 1 + 2
2+ + (where L is the lag operator, i.e. ¡1 = ).

The process is weakly stationary if and only if
P
=1

1; in this case the unconditional

variance is given by ¡
2
¢
= (1¡ 1 ¡ ¡ ) (1.7)

The process is characterised by leptokurtosis in excess with respect to the normal
distribution. In the case, for example, of ARCH(1) with j© ¡1 » (0 2), the
kurtosis is equal to: ¡

4
¢ ¡

2
¢2
= 3

¡
1¡ 2

1

¢ ¡
1¡ 3 2

1

¢
(1.8)

with 3 2
1 1, when 3 2

1 = 1 we have¡
4
¢ ¡

2
¢2
=1

In both cases we obtain a kurtosis coe±cient greater than 3, characteristic of the
normal distribution. The result is readily obtained:¡

4
¢
= 3

¡
4
¢

¡
4
¢
= 3

£
2 + 2

1

¡
4
¡1
¢
+ 2 1

¡
2
¡1
¢¤

¡
4
¢
=

3
£

2 + 2 1

¡
2
¡1
¢¤

(1¡ 3 2
1)

=
3 [ 2 + 2 1

2]

(1¡ 3 2
1)

substituting 2 = (1¡ 1):

¡
4
¢
=
3 [ 2 (1¡ 1) + 2

2
1]

(1¡ 3 2
1) (1¡ 1)

=
3 2 (1 + 1)

(1¡ 3 2
1) (1¡ 1)

¯nally

¡
4
¢ ¡

2
¢2
=
3 2 (1 + 1) (1¡ 1)

2

(1¡ 3 2
1) (1¡ 1) 2

=
3 (1¡ 2

1)

1¡ 3 2
1

(1.9)
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1.3.1 The ARCH Regression Model

We have an ARCH regression model when the disturbances in a linear regression
model follow an ARCH process:

= 0 +

¡1 ( ) = 0

¡1
¡
2
¢ ´ 2 = + ( ) 2

jª ¡1 »
¡
0 2

¢
where may include lagged dependent and exogenous variables.

1.3.2 ARCH as a nonlinear model

The essential characteristic of the ARCH model is
¡
2 2

¡1
¢ 6= 0, although

( ¡1) = 0 for 6= 0. We examine the relation of the ARCH model with
the bilinear model. A time series f g is said to follow a bilinear model if it satis¯es

=
X
=1

¡ +
X
=1

X
=1

¡ ¡ +

where is a sequence of i.i.d.(0 2) variables. The ¯rst two conditional moments
are

¡1 ( ) =
X
=1

¡ +
X
=1

X
=1

¡ ¡ +

¡1 ( ) = 2

In contrast with the ARCHmodel in which the conditional variance is time varying, in
the bilinear model the conditional variance is constant. Their unconditional moments,
however, might be similar. The bilinear model

= 21 ¡2 ¡1 +

( ) = 0

¡
2 2

¡1
¢
= 2

21
2

as this process is autocorrelated in squares, it will exhibit temporal clustering of large
and small deviations like an ARCH process.
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1.4 The GARCH(p,q) Model

In order to model in a parsimonious way the conditional heteroskedasticity, Bollerslev
[2] proposed the Generalised ARCH model, i.e GARCH(p,q):

2 = + ( ) 2 + ( ) 2 (1.10)

where ( ) = 1 + + , ( ) = 1 + + . The GARCH(1,1) is the
most popular model in the empirical literaturez:

2 = + 1
2
¡1 + 1

2
¡1 (1.11)

To ensure that the conditional variance is well de¯ned in a GARCH (p,q) model all
the coe±cients in the corresponding linear ARCH (1) should be positive. Rewriting
the GARCH (p,q) model as an ARCH (1):

2 =

Ã
1¡

X
=1

!¡1 "
+
X
=1

2
¡

#

= ¤ +
1X
=0

2
¡ ¡1 (1.12)

2 ¸ 0 if ¤ ¸ 0 and all ¸ 0. The non-negativity of ¤ and is also a necessary
condition for the non negativity of 2. In order to make ¤ e f g1=0 well de¯ned,
assume that :

i. the roots of the polynomial ( ) = 1 lie outside the unit circle.and that ¸ 0,
this is a condition for ¤ to be ¯nite and positive.

ii. ( ) e 1¡ ( ) have no common roots.

These conditions are establishing nor that 2 · 1 neither that f 2g1=¡1 is
strictly stationary. For the simple GARCH(1,1) almost sure positivity of 2 requires,
with the conditions (i) and (ii), that (Nelson and Cao [25]),

¸ 0

1 ¸ 0

1 ¸ 0 (1.13)

zThe GARCH model belongs to the class of deterministic conditional heteroskedasticity models
in which the conditional variance is a function of variables that are in the information set available
at time .
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For the GARCH(1,q) and GARCH(2,q) models these constraints can be relaxed, e.g.
in the GARCH(1,2) model the necessary and su±cient conditions become:

¸ 0

0 · 1 1

1 1 + 2 ¸ 0

1 ¸ 0 (1.14)

For the GARCH(2,1) model the conditions are:

¸ 0

1 ¸ 0

1 ¸ 0

1 + 2 1
2
1 + 4 2 ¸ 0 (1.15)

These constraints are less stringent than those proposed by Bollerslev [2]:

¸ 0

¸ 0 = 1

¸ 0 = 1 (1.16)

These results cannot be adopted in the multivariate case, where, as we will see be-
low, the requirement of positivity for f 2g means the positive de¯niteness for the
conditional variance-covariance matrix.

From the point of view of the maximum likelihood estimation of aGARCH(p,q)
model we need to recursively calculate f 2g1=0 starting from 0 applying the (1.10), as-
suming arbitrary values for the pre-sample period

©
2
¡1

2
¡

2
¡1

2
¡
ª
. The

conditions (1.16) guarantee that f 2g1=0 is not negative given arbitrary non negative
values for

©
2
¡1

2
¡

2
¡1

2
¡
ª
. On the contrary, the conditions which guar-

antee that ¤ ¸ 0 and ¸ 0 (1.14) for the GARCH(1,2) model and the conditions
(1.15) for the GARCH(2,1) model) do not. This problem can be solved choosing
the starting values that mantain non negative f 2g1=0 with probability 1, given non
negative ¤ and f g1=0. Nelson and Cao suggest to arbitrarly pick a 2 ¸ 0 and set
2 = 2 for t from -1 to 1. and 2 = 2 for 1¡ · · 0 where

2 =

Ã
1¡

X
=1

!¡1 "
+ 2

X
=1

#

= ¤ + 2

1X
=0
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So doing we have a sequence f 2g ¸ 0 for all ¸ 0 with probability 1, as

2 = ¤ +
¡1X
=0

2
¡ ¡1 +

1X
=

2

Supposing that
P
=1

+
P
=1

1 we can set 2 e 2 equal to their common uncondi-

tional mean:

2 ´ 2 ´
Ã
1¡

X
=1

¡
X
=1

!

1.4.1 The Yule-Walker equations for the squared process

In the GARCH(p,q) model the process f 2g has an ARMA(m,p) representations,
where = max ( )

2 = +
X
=1

¡
+

¢
2
¡ +

Ã
¡
X
=1

¡

!

where ¡1 [ ] = 0, 2 [¡ 2 1[ we can apply the classical results of ARMA model.
We can study the autocovariance function, that is:

2 ( ) =
¡
2 2

¡
¢

2 ( ) =

"
+
X
=1

¡
+

¢
2
¡ +

Ã
¡
X
=1

¡

!
2
¡

#

2 ( ) =

"X
=1

¡
+

¢ ¡
2
¡

2
¡
¢#
+

"
¡
X
=1

¡ 2
¡

#
(1.17)

When is big enough, the last term on the right of expression (1.17) is null. The
sequence of autocovariances satisfy a linear di®erence equation of order ( ),
for ¸ + 1

2 ( ) =

"X
=1

¡
+

¢
2 ( ¡ )

#

This system can be used to identify the lag order and , that is the and order
if ¸ , the order if .
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1.4.2 The GARCH Regression Model

Let =
¡
1 2

¡1 ¢ ¢ ¢ 2
¡

2
¡1 ¢ ¢ ¢ 2

¡
¢0
, =

¡
1 ¢ ¢ ¢ 1 ¢ ¢ ¢

¢
and 2

£, where = ( 0 0) and £ is a compact subspace of a Euclidean space such that
possesses ¯nite second moments. We may write the GARCH regression model as:

= ¡ 0

jª ¡1 »
¡
0 2

¢
2 = 0

1.4.3 Stationarity

The process f g which follows a GARCH(p,q) model is a martingale di®erence se-
quence. In order to study second-order stationarity it's su±cient to consider that:

[ ] = [ ¡1 ( )] + [ ¡1 ( )] =
£

2
¤

and show that is asymptotically constant in time (it does not depend upon time).

Proposition 2 A process f g which satis¯es a GARCH(p,q) model with positive
coe±cient ¸ 0, ¸ 0 = 1 , ¸ 0 = 1 is covariance stationary if
and only if:

(1) + (1) 1

This is a su±cient but non necessary conditions for strict stationarity. Because
ARCH processes are thick tailed, the conditions for covariance stationarity are often
more stringent than the conditions for strict stationarity.

Example 3 A GARCH(1,1) model can be written as

2 =

"
1 +

1X
=1

Y
=1

¡
1 + 1

2
¡
¢#

In fact,

2
+1 = + 1

2 + 1
2 = + 2

¡
1
2 + 1

¢

2 =

"
1 +

1X
=1

Y
=1

¡
1
2
¡ + 1

¢#
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2 = + 2
¡1
¡

1
2
¡1 + 1

¢
2
¡1 = + 2

¡2
¡

1
2
¡2 + 1

¢
2 = +

£
+ 2

¡2
¡

1
2
¡2 + 1

¢¤ ¡
1
2
¡1 + 1

¢
= +

¡
1
2
¡1 + 1

¢
+ 2

¡2
¡

1
2
¡2 + 1

¢ ¡
1
2
¡1 + 1

¢
= +

¡
1
2
¡1 + 1

¢
+

¡
1
2
¡1 + 1

¢ ¡
1
2
¡2 + 1

¢
+ 2

¡3
¡

1
2
¡3 + 1

¢ ¡
1
2
¡2 + 1

¢ ¡
1
2
¡1 + 1

¢
Nelson [23] shows that when 0, 2 1 a.s.and f 2g is strictly sta-

tionary if and only if [ln ( 1 + 1
2)] 0£

ln
¡

1 + 1
2
¢¤ · ln £ ¡

1 + 1
2
¢¤
= ln ( 1 + 1)

when 1 + 1 = 1 the model is strictly stationary. [ln ( 1 + 1
2)] 0 is a weaker

requirement than 1 + 1 1.

Example 4 ARCH(1), with 1 = 1, 1 = 0, » (0 1)£
ln
¡
2
¢¤ · ln £ ¡

2
¢¤
= ln (1)

It's strictly but not covariance stationary. The ARCH(q) is covariance stationary if
and only if the sum of the positive parameters is less than one.

1.4.4 Forecasting volatility

A GARCH(p,q) can be represented as an ARMA process, given that 2 = 2 + ,
where ¡1 [ ] = 0, 2 [¡ 2 1[:

2 = +

max( )X
=1

¡
+

¢
2
¡ +

Ã
¡
X
=1

¡

!
2 »ARMA(m,p) with = max( ). Forecasting with a GARCH(p,q) (Engle and
Bollerslev [11]):

2
+ = +

X
=1

£
2
+ ¡ +

2
+ ¡

¤
+
X
=

£
2
+ ¡ +

2
+ ¡

¤
where = min f ¡ 1g and by de¯nition summation from 1 to 0 and from
to both are equal to zero. Thus

£
2
+

¤
= +

X
=1

£
( + )

¡
2
+ ¡

¢¤
+
X
=

£
2
+ ¡ +

2
+ ¡

¤
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In particular for a GARCH(1,1) and 2:£
2
+

¤
=

¡2X
=0

( 1 + 1) + ( 1 + 1)
¡1 2

+1

=

h
1¡ ( 1 + 1)

¡1
i

[1¡ ( 1 + 1)]
+ ( 1 + 1)

¡1 2
+1

= 2
h
1¡ ( 1 + 1)

¡1
i
+ ( 1 + 1)

¡1 2
+1

= 2 + ( 1 + 1)
¡1 £ 2

+1 ¡ 2
¤

When the process is covariance stationary, it follows that
£
2
+

¤
converges to 2

as !1.
1.4.5 The IGARCH(p,q) model

De¯nition 5 The GARCH(p,q) process characterised by the ¯rst two conditional
moments:

¡1 [ ] = 0

2 ´ ¡1
£
2
¤
= +

X
=1

2
¡ +

X
=1

2
¡

where ¸ 0, ¸ 0 and ¸ 0 for all and the polynomial

1¡ ( )¡ ( ) = 0

has 0 unit root(s) and max f g¡ root(s) outside the unit circle is said to be:
i) Integrated in variance of order if = 0
ii) Integrated in variance of order with trend if 0.

The Integrated GARCH(p,q) models, both with or without trend, are there-
fore part of a wider class of models with a property called "persistent variance" in
which the current information remains important for the forecasts of the conditional
variances for all horizon.

So we have the Integrated GARCH(p,q) model when (necessary condition)

(1) + (1) = 1

To illustrate consider the IGARCH(1,1) which is characterised by

1 + 1 = 1

2 = + 1
2
¡1 + (1¡ 1)

2
¡1

2 = + 2
¡1 + 1

¡
2
¡1 ¡ 2

¡1
¢

0 1 · 1
For this particular model the conditional variance steps in the future is:£

2
+

¤
= ( ¡ 1) + 2

+1
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1.4.6 Persistence

In many studies of the time series behavior of asset volatility the question has been
how long shocks to conditional variance persist. If volatility shocks persist inde¯nitely,
they may move the whole term structure of risk premia. There are many notions of
convergence in the probability theory (almost sure, in probability, in ), so whether
a shock is transitory or persistent may depend on the de¯nition of convergence. In
linear models it typically makes no di®erence which of the standard de¯nitions we
use, since the de¯nitions usually agree. In GARCH models the situation is more
complicated. In the IGARCH(1,1):

2 = + 1
2
¡1 + 1

2
¡1

where 1 + 1 = 1. Given that
2 = 2 2, we can rewrite the IGARCH(1,1) process

as

2 = + 2
¡1
£
(1¡ 1) + 1

2
¡1
¤

0 1 · 1
When = 0, 2 is a martingale. Based on the nature of persistence in linear models,
it seems that IGARCH(1,1) with 0 and = 0 are analogous to random walks
with and without drift, respectively, and are therefore natural models of "persistent"
shocks. This turns out to be misleading, however: in IGARCH(1,1) with = 0, 2

collapses to zero almost surely, and in IGARCH(1,1) with 0, 2 is strictly sta-
tionary and ergodic and therefore does not behave like a random walk, since random
walks diverge almost surely.

Two notions of persistence.

1. Suppose 2 is strictly stationary and ergodic. Let ( 2) be the unconditional
cdf for 2, and ( 2) the conditional cdf for 2, given information at time

. For any ( 2)¡ ( 2)! 0 at all continuity points as !1 There
is no persistence when f 2g is stationary and ergodic.

2. Persistence is de¯ned in terms of forecast moments. For some 0, the shocks
to 2 fail to persist if and only if for every ,

¡
2
¢
converges, as !1, to

a ¯nite limit independent of time information set.

Whether or not shocks to f 2g "persist" depends very much on which de¯-
nition is adopted. The conditional moment may diverge to in¯nity for some , but
converge to a well-behaved limit independent of initial conditions for other , even
when the f 2g is stationary and ergodic.
Example 6 GARCH(1,1)

2
+1 = + 1

2 + 1
2 = + 2

¡
1
2 + 1

¢
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¡3
¡

2
¢
=

24 ¡( ¡3)¡1X
=0

( 1 + 1)

35
+ 2

¡3 ( 1 + 1) ( 1 + 1) ( 1 + 1)

The volatility forecast for time , conditioning on information set at time :

¡
2
¢
=

" ¡ ¡1X
=0

( 1 + 1)

#
+ 2

¡ ( 1 + 1)
¡ ¡

2
¢

converges to the unconditional variance of (1¡ 1 ¡ 1) as ! 1 if and
only if 1 + 1 1. In the IGARCH(1,1) model with _ 0 and 1 + 1 = 1
( 2) ! 1 a.s. as ! 1. Nevertheless, IGARCH models are strictly

stationary and ergodic.

1.4.7 The Component Model

A permanent and transitory component model of stock returns volatility (Engle and
Lee, 1993).

The ¯nding of a unit root in the volatility process indicates that there is a
stochastic trend as well as a transitory component in stock return volatility. The
decomposition of the conditional variance of asset returns in a permanent and tran-
sitory component is a way to investigate the long-run and the short-run movement
of volatility in the stock market.

The GARCH(1,1) model can also be written as

2 = (1¡ 1 ¡ 1)
2 + 1

2
¡1 + 1

2
¡1

= 2 + 1

¡
2
¡1 ¡ 2

¢
+ 1

¡
2
¡1 ¡ 2

¢
The last two terms have expected value zero. This model is extended to allow the
possibility that volatility is not constant in the long run. Let be the permanent
component of the conditional variance, the component model for the conditional vari-
ance is de¯ned as

2 = + 1

¡
2
¡1 ¡ ¡1

¢
+ 1

¡
2
¡1 ¡ ¡1

¢
(1.18)

= ¡ ( 1 + 1) ¡1 + 1
2
¡1 + 1

2
¡1

(1¡ 1 )
2 = [1¡ ( 1 + 1) ] + 1

2
¡1

= + ¡1 +
¡
2
¡1 ¡ 2

¡1
¢
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The constant volatility 2 has been replaced by the time-varying trend, , and its
past value. The forecasting error, 2

¡1 ¡ 2
¡1, serves as a driving force for the time-

dependent movement of the trend. The di®erence between the conditional variance
and its trend, 2

¡1 ¡ ¡1, is the transitory component of the conditional variance.
The multistep forecast of the trend is just the current trend plus a constant

drift:

+ = + + ¡1 +
¡
2
+ ¡1 ¡ 2

+ ¡1
¢

¡1 [ + ] = + ¡1 [ + ¡1] + ¡1
£
2
+ ¡1 ¡ 2

+ ¡1
¤

but ¡1
¡
2
+ ¡1

¢
= ¡1

¡
2
+ ¡1

¢
such that ¡1

£
2
+ ¡1 ¡ 2

+ ¡1
¤
= 0.

¡1 [ + ] = + + ¡1 [ + ¡2] + ¡1
£
2
+ ¡2 ¡ 2

+ ¡2
¤

=

= + (1.19)

From (1.18)

2
+1 ¡ +1 = 1

¡
2 ¡ ¢

+ 1

¡
2 ¡ ¢

¡1
¡

2
+1

¢¡ ¡1 ( +1) = 1 ¡1
¡
2 ¡ ¢

+ 1 ¡1
¡

2 ¡ ¢
= ( 1 + 1)

¡
2 ¡ ¢

2
+2 ¡ +2 = 1

¡
2
+1 ¡ +1

¢
+ 1

¡
2
+1 ¡ +1

¢
2
+3 ¡ +3 = 1

¡
2
+2 ¡ +2

¢
+ 1

¡
2
+2 ¡ +2

¢
¡

2
+3 ¡ +3

¢
= 1

¡
2
+2 ¡ +2

¢
+ 1

¡
2
+2 ¡ +2

¢
= 1

¡
2
+2

¢¡ 1 ( +2) + 1

¡
2
+2

¢¡ 1 ( +2)

= ( 1 + 1)
£ ¡

2
+2

¢¡ ( +2)
¤

= ( 1 + 1)
£

1

¡
2
+1 ¡ +1

¢
+ 1

¡
2
+1 ¡ +1

¢¤
¡1
¡

2
+3 ¡ +3

¢
= ( 1 + 1) ¡1

£
1

¡
2
+1 ¡ +1

¢
+ 1

¡
2
+1 ¡ +1

¢¤
= ( 1 + 1)

£
( 1 + 1) ¡1

¡
2
+1

¢¡ ( 1 + 1) ¡1 ( +1)
¤

= ( 1 + 1)
£
( 1 + 1)

¡
¡1
¡

2
+1

¢¡ ¡1 ( +1)
¢¤

= ( 1 + 1)
3 ¡ 2 ¡ ¢
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¡1
¡

2
+

¢¡ ¡1 ( + ) = ( 1 + 1)
¡

¡1
¡

2
+ ¡1

¢¡ ¡1 ( + ¡1)
¢

= ( 1 + 1)
¡

2 ¡ ¢
The forecast ¡1

¡
2
+

¢¡ ¡1 ( + ) will eventually converge to zero as the forecast-
ing horizon extends into the remote future

¡1
¡

2
+

¢¡ ¡1 ( + ) = 0 as !1 (1.20)

Therefore there will be no di®erence between the conditional variance and the trend
in the long run. This is the motivation for being called the permanent component
of the conditional variance. Combining (1.20) and (1.19), the long run forecast of the
conditional variance is just the current expectation of the trend plus a constant drift,

¡1
¡

2
+

¢
= + as !1

The component model can be extended to include non-unit-root process. The general
component model becomes

2 = + 1

¡
2
¡1 ¡ ¡1

¢
+ 1

¡
2
¡1 ¡ ¡1

¢
(1.21)

= + ¡1 +
¡
2
¡1 ¡ 2

¡1
¢

(1.22)

stil represents the component of the conditional variance with the longer memory,
as long as ( 1 + 1). The multistep forecast of the conditional variance and the
trend are

¡1
¡

2
+

¢¡ ¡1 ( + ) = ( 1 + 1)
¡

2 ¡ ¢
(1.23)

+ = + + ¡1 +
¡
2
+ ¡1 ¡ 2

+ ¡1
¢

¡1 [ + ] = + ¡1 [ + ¡1] + ¡1
£
2
+ ¡1 ¡ 2

+ ¡1
¤

= + [ + ¡1 [ + ¡2]]
=

=
¡
1 + + + ¡1¢ +

¡1 [ + ] =

¡
1¡ ¢
(1¡ )

+ (1.24)

for 1 and ( 1 + 1) 1. If ( 1 + 1), the transitory component in (1.23)
decays faster than the trend in (1.24) so that the trend will dominate the forecast of
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the conditional variance as the forecasting horizon extends. The conditional variance
will eventually converge to a constant since the trend itself is stationary,

¡1
¡

2
+

¢
= ¡1 ( + ) = (1¡ ) as !1

By rewriting (1.21) as

2 = (1¡ 1 ¡ 1 ) + 1
2
¡1 + 1

2
¡1

and (1.22) as

(1¡ ) = +
¡
2
¡1 ¡ 2

¡1
¢

(1.25)

and multiplying by (1¡ ) the general component model reduces to

(1¡ ) 2 = (1¡ )
£
(1¡ 1 ¡ 1 ) + 1

2
¡1 + 1

2
¡1
¤

(1.26)

substituting (1.25) into (1.26)

(1¡ ) 2 = (1¡ 1 ¡ 1 )
£
+

¡
2
¡1 ¡ 2

¡1
¢¤
+ (1¡ )

¡
1
2
¡1 + 1

2
¡1
¢

(1¡ ) 2 = (1¡ 1 ¡ 1) + (1¡ 1 ¡ 1 )
¡
2
¡1 ¡ 2

¡1
¢
+ (1¡ )

¡
1
2
¡1 + 1

2
¡1
¢

(1¡ ) 2 = (1¡ 1 ¡ 1) + ( + 1)
2
¡1 + (¡ 1 ¡ ( 1 + 1) )

2
¡2

+( ¡ + 1)
2
¡1 + ( ( 1 + 1)¡ 1 )

2
¡2

A GARCH(2,2) process represents the underlying data generating process for the
conditional variance de¯ned in the component model. When = = 0, then the
component model will reduce to the GARCH(1,1). So the GARCH(1,1) only describes
a single dynamic component of the conditional variance.
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1.5 Asymmetric Models

1.5.1 The EGARCH(p,q) Model

The simple structure of (1.10) imposes important limitations on GARCH models.

² The negative correlation between stock returns and changes in returns volatility,
i.e. volatility tends to rise in response to "bad news", (excess returns lower than
expected) and to fall in response to "good news" (excess returns higher than
expected). GARCH models, however, assume that only the magnitude and not
the positivity or negativity of unanticipated excess returns determines feature
2. If the distribution of is symmetric, the change in variance tomorrow is
conditionally uncorrelated with excess returns today (Nelson [24]). If we write
2 as a function of lagged 2 and lagged 2, where 2 = 2 2

2 = +
X
=1

2
¡

2
¡ +

X
=1

2
¡

it is evident that the conditional variance is invariant to changes in sign of the
0 . Moreover, the innovations 2

¡
2
¡ are not i.i.d.

² Another limitation of GARCH models results from the nonnegativity con-
straints on ¤ and in (1.12), which are imposed to ensure that 2 remains
nonnegative for all with probability one. These constraints imply that increas-
ing 2 in any period increases 2

+ for all ¸ 1, ruling out random oscillatory
behavior in the 2 process.

² The GARCH models are not able to explain the observed covariance between
2 and ¡ . This is possible only if the conditional variance is expressed as an
asymmetric function of ¡ .

² In GARCH(1,1) model, shocks may persist in one norm and die out in another,
so the conditional moments of GARCH(1,1) may explode even when the process
is strictly stationary and ergodic.

² GARCH models essentially specify the behavior of the square of the data. In
this case a few large observations can dominate the sample.

The asymmetric models provide an explanation for the so called leverage e®ect,
i.e. an unexpected price drop increases volatility more than an analogous unexpected
price increase. The EGARCH(p,q) model (Exponential GARCH(p,q)) put forward
by Nelson [24] provides a ¯rst explanation for the 2 depends on both size and the
sign of lagged residuals. This is the ¯rst example of asymmetric model:

ln
¡

2
¢
= +

X
=1

ln
¡

2
¡
¢
+
X
=1

[ ¡ + (j ¡ j ¡ j ¡ j)] (1.27)
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1 ´ 1, j j = (2 )1 2given that » (0 1), where the parameters , ,
are not restricted to be nonnegative. Let de¯ne

( ) ´ + [j j ¡ j j]

by construction f ( )g1=¡1 is a zero-mean, i.i.d. random sequence. The components
of ( ) are and [j j ¡ j j], each with mean zero. If the distribution of is
symmetric, the components are orthogonal, though they are not independent. Over
the range 0 1, ( ) is linear in with slope + , and over the range
¡1 · 0, ( ) is linear with slope ¡ . Thus, ( ) allows for the conditional
variance process f 2g to respond asymmetrically to rises and falls in stock price. The
term [j j ¡ j j] represents a magnitude e®ect. If 0 and = 0, the innovation
in ln

¡
2
+1

¢
is positive (negative) when the magnitude of is larger (smaller) than

its expected value. If = 0 and 0, the innovation in conditional variance is now
positive (negative) when returns innovations are negative (positive).

A negative shock to the returns which would increase the debt to equity ratio
and therefore increase uncertainty of future returns could be accounted for when

0 and 0.

In the EGARCH model ln
¡

2
+1

¢
is homoskedastic conditional on 2, and the

partial correlation between and ln
¡

2
+1

¢
is constant conditional on 2.

An alternative possible speci¯cation of the news impact curve is the following
(Bollerslev, Engle, Nelson (1994))

( 2) = ¡2 0 1

1 + 2 j j +
¡2 0

·
1 j j

1 + 2 j j
¡

µ
1 j j

1 + 2 j j
¶¸

The parameters 0 and 0 parameters allow both the conditional variance of
ln
¡

2
+1

¢
and its conditional correlation with to vary with the level of 2.

If 1 0 then (ln
¡

2
+1

¢
) 0: leverage e®ect.

The EGARCH model constraints 0 = 0 = 0, so that the conditional corre-
lation is constant, as is the conditional variance of ln ( 2).

The , 2 and 2 parameters give the model °exibility in how much weight
to assign to the tail observations: e.g., 2 0 2 0, the model downweights large
j j's.

A number of authors, e.g., Nelson ([24]), have found that standardized resid-
uals from estimated GARCH models are leptokurtic relative to the normal, see also
Engle and Gonzalez-Rivera ([18]). Nelson [24] assumes that has a GED distribution
(also called the exponential power family). The density of a GED random variable
normalized to have mean of zero and a variance of one is given by:

( ; ) =
exp

£¡ ¡1
2

¢ j j ¤
2(1+1 )¡ (1 )

¡1 1 0 · 1
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where ¡ (¢) is the gamma function, and
´ £2(¡2 )¡ (1 ) ¡ (3 )

¤1 2
is a tail thickness parameter. When = 2, has a standard normal distribution.

For 2, the distribution of has thicker tails than the normal (e.g. when = 1,
has a double exponential distribution) and for 2, the distribution of has thinner
tails than the normal (e.g., for = 1, is uniformly distributed on the interval£¡31 2 31 2¤). With this density, we obtain that j j = 21 ¡ (2 )

¡ (1 )
(Hamilton,

[21]).
More general than the GED we have the Generalized t Distribution, which

takes the form:¡ ¡1;
¢
=
2 1 (1 ) [1 + j j ( )] +1

where (1 ) ´ ¡ (1 ) ¡ ( ) ¡ (1 + ) denotes the beta function,

´ [¡ ( ) ¡ (1 ) ¡ (3 ) ¡ ( ¡ 2 )]1 2

and 2, 0 and 0 The factor makes
¡ ¡1¢ = 1. The Generalized

t nests both the Student's t distribution and the GED. The GED is obtained for
=1. The GED has only one shape parameter , which is apparently insu±cient

to ¯t both the central part and the tails of the conditional districbution.

Stationarity

In order to simply state the stationarity conditions, we write the EGARCH(p,q)
model as:"

1¡
X
=1

#
ln
¡

2
¢
= +

X
=1

[ + (j j ¡ j j)]

ln
¡

2
¢
=

"
1¡
X
=1

#¡1
+

"
1¡

X
=1

#¡1 "X
=1

#
( )

ln
¡

2
¢
= ¤ +

1X
=1

( ¡ )

In the EGARCH(p,q) model ln ( 2) is a linear process, and its stationarity
(covariance or strict) and ergodicity are easily checked.

Given 6= 0 or 6= 0, then¯̄
ln
¡

2
¢¡ ¤¯̄ 1 a.s. when

1X
=1

2 1
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follows from the independence and ¯nite variance of the ( ) and from Billingsley
(1986, Theorem 22.6). From this we have that¯̄̄̄

ln

µ
2

exp( ¤)

¶¯̄̄̄
1 a.s.¯̄̄̄

2

exp( ¤)

¯̄̄̄
1 a.s.

fexp (¡ ¤) 2g, fexp (¡ ¤ 2) g, where = , is i.i.d., are ergodic and strictly
stationarity. For all [ln ( 2)¡ ¤] = 0 and the variance [ln ( 2)¡ ¤] =

( ( ))
1P
=1

2. Since ( ( )) is ¯nite and the distribution of (ln ( 2)¡ ¤) is

independent of , the ¯rst two moments of (ln ( 2)¡ ¤) are ¯nite and time invari-

ance, so (ln ( 2)¡ ¤) is covariance stationary if
1P
=1

2 1. If
1P
=1

2 = 1, then
jln ( 2)¡ ¤j =1 almost surely.

Since ln ( 2) is written in ARMA(p,q) form, when

·
1¡P

=1

¸
and

·P
=1

¸
have no common roots, conditions for strict stationarity of ln ( 2) are equivalent to

all the roots of

·
1¡P

=1

¸
lying outside the unit circle.

The strict stationarity of fexp (¡ ¤) 2g, fexp (¡ ¤ 2) g need not imply
covariance stationarity, since fexp (¡ ¤) 2g, fexp (¡ ¤ 2) g may fail to have ¯-
nite unconditional means and variances. For some distribution of f g (e.g., the
Student t with ¯nite degrees of freedomx), fexp (¡ ¤) 2g and fexp (¡ ¤ 2) g typ-
ically have no ¯nite unconditional moments. If the distribution of is GED and is

thinner-tailed than the double exponential, and if
1P
=1

1, then fexp (¡ ¤) 2g
and fexp (¡ ¤ 2) g are not only strictly stationary and ergodic, but have arbitrary
¯nite moments, which in turn implies that they are covariance stationary.

1.5.2 Other Asymmetric Models

There is a long tradition in ¯nance that models stock return volatility as negatively
correlated with stock returns. The explanation for this phenomenon is based on lever-
age. A drop in the value of the stock (negative return) increases ¯nancial leverage,
which makes the stock riskier and increases its volatility. The news have asymmetric
e®ects on volatility. In the aymmetric volatility models good news and bad news have
di®erent predictability for future volatility.

xThe Student t distribution is:

[ ; ] = [ ( ¡ 2)]¡1 2 ¡

·
1

2
( + 1)

¸
¡
³
2

´¡1 h
1 + ( ¡ 2)¡1

i¡( +1) 2
as (degree of freedom) goes to in¯nity the t distribution converges to the normal. When 4 1,
the kurtosis coe±cient is = 3( ¡2)

( ¡4) 3.
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The Non linear ARCH(1) model (Engle - Bollerslev [11]):

= +
X
=1

j ¡ j +
X
=1

¡

= +
X
=1

j ¡ ¡ j +
X
=1

¡

for 6= 0, the innovations in will depend on the size as well as the sign of lagged
residuals, thereby allowing for the leverage e®ect in stock return volatility.

The Glosten - Jagannathan - Runkle model[19]:

2 = +
X
=1

2
¡ +

X
=1

¡
2
¡1 +

¡
¡

2
¡
¢

where

¡ =
½
1 0
0 ¸ 0

The Asymmetric GARCH(p,q) model (Engle, [10]):

2 = +
X
=1

( ¡ + )2 +
X
=1

2
¡

The QGARCH by Sentana (Sentana, [28]):

2 = 2 +ª0 ¡ + 0
¡ ¡ +

X
=1

2
¡

when ¡ = ( ¡1 ¡ )
0. The linear term (ª0 ¡ ) allows for asymmetry. The

o®-diagonal elements of accounts for interaction e®ects of lagged values of on
the conditional variance.

The QGARCH nests several asymmetric models. The augmented GARCH
assumes ª = 0 (Bera and Lee, 1990). The ARCH(q) model corresponds to ª = 0,
= 0 and diagonal. The asymmetric GARCH model assumes to be diagonal.

The linear standard deviation model (Robinson, 1991) corresponds to = 0, 2 = 2,
ª = 2 and = 0

2 = ( + 0 ¡ )
2

The Conditional Standard Deviation Model (Taylor, [29])

= + +
X
=1

j ¡ j+
X
=1

2
¡

the conditional standard deviation is a distributed lag of absolute residuals.
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1.6 The News Impact Curve

The news have asymmetric e®ects on volatility. In the aymmetric volatility models
good news and bad news have di®erent predictability for future volatility. The news
impact curve characterizes the impact of past return shocks on the return volatility
which is implicit in a volatility model.

Holding constant the information dated ¡ 2 and earlier, we can examine
the implied relation between ¡1 and 2, with 2

¡ = 2 = 1 . This curve is
called, with all lagged conditional variances evaluated at the level of the unconditional
variance of the stock return, the news impact curve because it relates past return
shocks (news) to current volatility. This curve measures how new information is
incorporated into volatility estimates.

For the GARCH model the News Impact Curve (NIC) is centered on ¡1 =
0. In the case of EGARCH model the curve has its minimum at ¡1 = 0 and is
exponentially increasing in both directions but with di®erent paramters.

GARCH(1,1):

2 = + 2
¡1 +

2
¡1

The news impact curve has the following expression:

2 = + 2
¡1

´ + 2

EGARCH(1,1):

ln
¡

2
¢
= + ln

¡
2
¡1
¢
+ ¡1 + (j ¡1j ¡ j ¡1j)

where = . The news impact curve is

2 =

8>><>>:
exp

·
+

¡1

¸
¡1 0

exp

· ¡
¡1

¸
¡1 0

´ 2 exp
h
¡

p
2

i
0 + 0

² The EGARCH allows good news and bad news to have di®erent impact on
volatility, while the standard GARCH does not.

² The EGARCH model allows big news to have a greater impact on volatility
than GARCH model. EGARCH would have higher variances in both directions
because the exponential curve eventually dominates the quadrature.
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The Asymmetric GARCH(1,1) (Engle, 1990)

2 = + ( ¡1 + )2 + 2
¡1

the NIC is

2 = + ( ¡1 + )2

´ + 2

0 0 · 1 0 0 · 1

is asymmetric and centered at ¡1 = ¡ .

The Glosten-Jagannathan-Runkle model

2 = + 2 + 2
¡1 +

¡
¡1

2
¡1

¡
¡1 =

½
1 ¡1 0
0

The NIC is

2 =

½
+ 2

¡1 ¡1 0
+ ( + ) 2

¡1 ¡1 0

´ + 2

0 0 · 1 0 0 · 1 + 1

is centered at ¡1 = ¡ .

These di®erences between the news impact curves of the models have impor-
tant implications for portfolio selection and asset pricing. Since predictable market
volatility is related to market premium, the two models imply very di®erent market
risk premiums, and hence di®erent risk premiums for individual stocks under condi-
tional version of CAPM. Di®erences in predicted volatility after the arrival of some
major news leads to a signi¯cant di®erence in the current option price and to di®erent
dynamic hedging strategies.
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1.7 The GARCH-in-mean Model

The GARCH-in-mean (GARCH-M) proposed by Engle, Lilien and Robins (1987)
consists of the system:

= 0 + 1 + 2

¡
2
¢
+

2 = 0 +
X
=1

2
¡1 +

X
=1

2
¡1

j © ¡1 » (0 2)

where is a ¯nancial return. This model characterizes the evolution of the mean
and the variance of a time series simultaneously. The process specifying the condi-
tional variance is a GARCH(1,1) process. Engle, Lilien and Robbins ([13]) extend
the Engle's ARCH model to allow the conditional variance to be a determinant of
the conditional mean of the process, i.e., the expected risk premium. They consider
an economy where risk averse economic agents choose among two kind of ¯nancial
investment in order to maximize their expected utility. The ¯rst possibility is repre-
sented by a risky asset with normally distributed returns, i.e., the risky is measured
by the asset return variance and the compensation by a rise in the expected returns.
The second investment choice is represented by a riskless asset. The agents utility
function maximization subject to the market clearing conditions lead to the tradi-
tional relation between the mean and the variance of the risky asset return. Engle,
Lilien and Robbins investigate the previous relation when the risky asset variance
changes over time and therefore the risky asset price will change as well. The above
assumptions determine a relation between the mean and the variance of asset return
that is still positive but not constant. The GARCH-M model therefore allows to
analize the possibility of time-varying risk premium. When ´ ( ¡ ), where
( ¡ ) is the risk premium on holding the asset, then the GARCH-M represents a
simple way to model the relation between risk premium and its conditional variance:

= 0 + 1 + 2

¡
2
¢
+

2 = 0 +
X
=1

2
¡1 +

X
=1

2
¡1

j © ¡1 » (0 2)
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It turns out that:

j © ¡1 = ( ¡ ) j © ¡1 » ( 0 + 1 + 2

¡
2
¢

2)

In applications, ( 2) =
p

2, ( 2) = ln ( 2) and ( 2) = 2 have been used.
Let =

¡
0 1 2 1 1

¢
be the parameters vector. The

procedure utilized in estimating is the maximization of the conditional log likelihood
function which, under the assumption of distribution of error process becomes:

( ) =
X
=1

( ) =
X
=1

(¡1
2

( 2)¡
2

2 2
)

Moreover the consistency of the parameters estimation requires that both the ¯rst
two conditional moments are correctly speci¯ed and simultaneously estimated. The
GARCH-in-mean model can be used to estimate the conditional CAPM.
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1.8 Long memory in stock returns

The Asymmetric Power ARCH (Ding, Engle and Granger, 1993)

= +

=

» (0 1)

= +
X
=1

(j ¡ j ¡ ¡ ) +
X
=1

¡

where

0

¸ 0

¸ 0 = 1

¡1 1 = 1

¸ 0 = 1

This model imposes a Box-Cox transformation of the conditional standard deviation
process and the asymmetric absolute residuals. The asymmetric response of volatility
to positive and negative "shocks" is the well known leverage e®ect.

If we assume the distribution of is conditionally normal, then the condition
for existence of

£ ¤
and j j is

1p
2

X
=1

n
(1 + ) + (1¡ )

o
2

¡1
2 ¡

µ
+ 1

2

¶
+
X
=1

1

If this condition is satis¯ed, then when ¸ 2 we have covariance stationary. But
¸ 2 is a su±cient condition for to be covariance stationary.

This generalized version of ARCHmodel includes seven other models as special
cases.

1. ARCH(q) model, just let = 2 and = 0, = 1 , = 0, = 1 .

2. GARCH(p,q) model just let = 2 and = 0, = 1 .

3. Taylor/Schwert's GARCH in standard deviation model just let = 1 and = 0,
= 1 .
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4. GJR model just let = 2.

When = 2 and 0 · 1

2 = +
X
=1

(j ¡ j ¡ ¡ )
2 +

X
=1

2
¡

= +
X
=1

¡j ¡ j2 + 2 2
¡ ¡ 2 j ¡ j ¡

¢
+
X
=1

2
¡

2 =

8>><>>:
+
P
=1

2 (1 + )2 2
¡ +

P
=1

2
¡ ¡ 0

+
P
=1

(1¡ )2 2
¡ +

P
=1

2
¡ ¡ 0

2 = +
X
=1

(1¡ )2 2
¡ +

X
=1

©
(1 + )2 ¡ (1¡ )2

ª ¡ 2
¡ +

X
=1

2
¡

2 = +
X
=1

(1¡ )2 2
¡ +

X
=1

2
¡ +

X
=1

4 ¡ 2
¡

¡ =
½
1 ¡ 0
0

If we de¯ne

¤ = (1¡ )2

¤ = 4

then we have

2 = +
X
=1

(1¡ )2 2
¡ +

X
=1

2
¡ +

X
=1

¤ ¡ 2
¡

which is the GJR model.
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When ¡1 · 0 we have

2 = +
X
=1

(j ¡ j ¡ ¡ )
2 +

X
=1

2
¡

= +
X
=1

¡j ¡ j2 + 2 2
¡ ¡ 2 j ¡ j ¡

¢
+
X
=1

2
¡

= +
X
=1

(1¡ )2 2
¡ +

X
=1

2
¡ ¡ 0

= +
X
=1

(1 + )2 2
¡ +

X
=1

2
¡ ¡ 0

= +
X
=1

(1 + )2 2
¡ +

X
=1

2
¡ +

X
=1

©
(1¡ )2 ¡ (1 + )2

ª
+ 2

¡

= +
X
=1

(1 + )2 2
¡ +

X
=1

2
¡ +

X
=1

©
1 + 2 ¡ 2 ¡ 1¡ 2 ¡ 2 ª

+ 2
¡

= +
X
=1

(1 + )2 2
¡ +

X
=1

2
¡ ¡

X
=1

4 + 2
¡

+ =

½
1 ¡ 0
0

de¯ne

¤ = (1 + )2

¤ = ¡4
we have

2 = +
X
=1

¤ 2
¡ +

X
=1

2
¡ +

X
=1

¤ + 2
¡

which allows positive shocks to have a stronger e®ect on volatility.

5. Zakoian's TARCH model (Zakoian (1991)), let = 1 and = 0, = 1 .
We have

= +
X
=1

(j ¡ j ¡ ¡ )

= +
X
=1

(1¡ ) +
¡ ¡

X
=1

(1 + ) ¡
¡
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where

+
¡ =

½
¡ ¡ 0
0

and

¡
¡ = ¡ ¡ +

¡

De¯ning

+ = (1¡ )
¡ = (1 + )

= +
X
=1

(1¡ ) +
¡ ¡

X
=1

(1 + ) ¡
¡

If we let 6= 0, = 1 then we get a more general class of TARCH
models.
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Chapter 2

ESTIMATION PROCEDURES

The procedure most often used in estimating 0 in ARCH models involves the max-
imization of a likelihood function constructed under the auxiliary assumption of an
i.i.d. distribution for the standardized innovation ( ). Let ( ( ) ; ) denote the
density function for ( ) ´ ( ) ( ), with mean zero and variance one, where
is the nuisance parameter, 2 µ . Let ( ¡1 1) be a sample realization
from an ARCH model as de¯ned by equations (1.1) through (1.5), and 0 ´ ( 0 0),
the combined ( + )£1 parameter vector to be estimated for the conditional mean,
variance and density functions.

The log-likelihood function for the t-th observation is then given by

( ; ) = ln f [ ( ) ; ]g ¡ 1
2
ln
£

2 ( )
¤

= 1 2 (2.1)

The term ¡1
2
ln [ 2 ( )] on the right hand side is the Jacobiam that arises in the trans-

formation from the standardized innovations, ( ), to the observables ( ( ; ) =

( ( ) ; ) j j, where = =
1

( )
).

The log-likelihood function for the full sample equals the sum of the conditional
log likelihoods in eq.(2.1):

( ¡1 1; ) =
X
=1

( ; ) (2.2)

The maximum likelihood estimator for the true parameters 0
0 ´ ( 0

0
0
0), say

b is
found by the maximization of eq.(2.2). Assuming the conditional density and the
( ) and 2 ( ) functions to be di®erentiable for all 2 ££ ´ ª, the maximum

likelihood estimator is the solution to

( ¡1 1; ) ´
X
=1

( ; ) = 0 (2.3)

where ´ ( )
is the score vector for the tth observation. In particular for the
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conditional mean and variance parameters

( )
= [ ( ) ; ]¡1 0 [ ( ) ; ]

( ) ¡ 1
2

£
2 ( )

¤¡1 2

(2.4)

where 0 [ ( ) ; ] ´ ( ( ) ; )
and

( )
=

Ã
( )p
2

!
=
¡

p
2 ¡ 1

2
( 2)

¡1 2 2

( )
2

= ¡ ¡
2 ( )

¢¡1 2 ¡ 1
2

¡
2 ( )

¢¡3 2 2

( )

where

( ) ´ ¡ ( )

In practice the solution to the set of + non-linear equations in (2.3) is found by
numerical optimization techniques.

In order to implement the maximum likelihood procedure an explicit assump-
tion regarding the conditional density in eq.(2.1). The most commonly employed
distribution in the literature is the normal:

[ ( ) ; ] = (2 )¡1 2 exp

(
¡ ( )2

2

)
Since the normal distribution is uniquely determined by its ¯rst two moments, only
the conditional mean and variance parameters enter the log-likelihood function in
equation (2.2); i.e. = . The log-likelihood is:

= ¡1
2
ln (2 )¡ 1

2
( )2 ¡ 1

2
ln
¡

2
¢

it follows that the score vector in eq.(2.4) takes the form:

= ¡ ¡ 1
2

¡
2 ( )

¢¡1 ( 2 ( ))

= ¡ ( )p
2

³
( ) ( 2)

¡1 2´
¡ 1
2

¡
2 ( )

¢¡1 ( 2 ( ))

= ¡ ( )p
2

³
( ¡ ( )) ( 2)

¡1 2´
¡ 1
2

¡
2 ( )

¢¡1 ( 2 ( ))

=
( )p
2

( ) 2 ( )¡1 2 +
1

2

¡
2 ( )

¢¡3 2 2 ( ) 2 ( )p
2 ( )

¡ 1
2

¡
2 ( )

¢¡1 2 ( )

=
( ) ( )

2 ( )
+
1

2

2 ( ) 2 ( )

( 2 ( ))2
¡ 1
2

2 ( ) ¡ 2 ( )
¢¡1
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=
( ) ( )

2 ( )
+
1

2

¡
2 ( )

¢¡1 2 ( )
·

2 ( )
2 ( )

¡ 1
¸

(2.5)

Several other conditional distributions have been employed in the literature to
capture the degree of tail fatness in speculative prices. We have seen above Student's
t, GED, Generalized Student's t.

When = ( 0 0)0 where are the conditional mean parameters and are
the conditional variance parameters, the score takes the form:

=

µ ¶
where

=
( ) ( )

2 ( )

=
1

2

¡
2 ( )

¢¡1 2 ( )
·

2 ( )
2 ( )

¡ 1
¸

Weiss (1986) provided the ¯rst study of the asymptotic properties of the ARCH
MLE. He showed that the MLE is consistent and asymptotically normal, requiring
that the normalized data have ¯nite fourth moments. This rules out IGARCHmodels.
Bollerslev and Wooldridge derive the large sample distribution of the QMLE under
high-level assumptions: asymptotic normality of the score vector and uniform weak
convergence of the likelihood and its second derivatives. They do not verify conditions
or show how they might be veri¯ed for GARCH models.

Lumsdaine (1996) imposed assumptions upon the rescaled varaible, ,
rather than upon the observed data. As auxiliary assumptions, Lumsdaine assumed
that the rescaled variable is independent and identically distributed (i.i.d.) and drawn
from a symmetric unimodal density with 32nd moment ¯nite. Lee and Hansen (1994)
extended this literature to encompass a much broader class of GARCH processes.
They focus on QMLE properties. They assume that conditional mean and variance
equations have been speci¯ed correctly and that a likelihood is used as a vehicle to
estimate the parameters. Lee and Hansen stress that there is no reason to assume
that all of the conditional dependence is contained in the conditional mean and vari-
ance, so, , the rescaled variable need not be independent over time. They allow
for some time dependency, specifying that the rescaled variable is strictly station-
ary and ergodic. For the IGARCH case they are only able to prove the existence
of a consistent root of the likelihood. For this result we need that the conditional
2+ moment of the rescaled variable is uniformly bounded. Asymptotic normality is
proved (including the IGARCH case) by adding the assumption that the conditional
fourth moment of the rescaled variable is uniformly bounded.
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2.1 Quasi-Maximum Likelihood Estimation

2.1.1 Kullback Information Criterion

In order to study the properties of a model given a set of observations, one can view
a model as a good or bad approximation to the "true" but unknown distribution 0

of the observations. In the ¯rst case, one assumes that the distribution 0 generating
the observations belongs to the family of distributions associated with the model, i.e.,
one assumes that 0 2 P. When the family is parametric so that P = f 2 £g,
the distribution 0 can be de¯ned through a value 0 of the parameter and one has

0 = 0 . This value is called the true value of the parameter. The distribution 0

uniquely de¯nes 0 if the mapping 7! is bijective, i.e., the model is identi¯ed.
When one believes a priori that the true distribution 0 does not belong to P , one
says that there may be speci¯cation errors. Then it is interesting to ¯nd the element
¤
0 in P that is closest to 0 in order to assess the type of speci¯cation errors by
comparing 0 to

¤
0 . To do this, one must have a measure of the proximity or

dicrepancy between the probability distributions. This is provided by the Kullback
Information Criterion.

De¯nition 7 (Kullback Information Criterion). Given two distributions = ( ( ) ¢ )
and ¤ = ( ¤ ( ) ¢ ) the quantity

( ¤) = ¤ log
µ ¤ ( )

( )

¶
=

Z
Y

log

µ ¤ ( )
( )

¶
¤ ( ) ( )

where is the common dominating measure, is called the Kullback Information Cri-
terion.

2.1.2 Quasi-Maximum Likelihood Estimation Theory

To study the relationship between an endogenous variable and some exogenous vari-
ables , one considers a conditional model specifying the form of the conditional dis-
tribution of 1 given 1 . It's assumed that the model is parametrized
by 2 £ which is an open subset of R the densities can be written as

( 1 j 1 ; ) =
Y
=1

( j ; ) 2 £

thus the model implies the mutual independence of the variables 1 con-
ditionally on 1 and the equality of the conditional densities ( j ; )
across observations. We consider the case where the model is misspeci¯ed. The true
distribution of the observations is given by the density

0 ( 1 j 1 ) =
Y
=1

0 ( j )



Quasi-Maximum Likelihood Estimation 37

where 0 ( j ) does not belong to the speci¯ed density family, 0 ( j ) 2 f ( j ; ) 2 £g.
It's possible to evaluate the discrepancy between the true density 0 and the

model f ( j ; ) 2 £g by the Kullback Information Criterion. This leads natu-
rally to the concept of quasi true value ¤

0 of the parameter that corresponds to the
distribution in the model that is closest to 0. This quasi true value is a solution to

max
2£ 0 log ( j ; )

where 0 denotes the conditional expectation of given under 0. We assume
¤
0

is unique.

De¯nition 8 A quasi (or pseudo) maximum likelihood (QML) estimator b of is

a solution b to

max
2£

X
=1

log ( j ; )

Thus b is a maximum likelihood estimator based on a misspeci¯ed model.
Under regularity conditions, the QML estimator converges almost surely to the pseudo
true value ¤

0

Proposition 9 Under regularity conditions, the QML estimator is asymptotically
normal distributed with

p ³b ¡ ¤
0

´
! ¡

0 ¡1 ¡1¢
The matrices and are, respectively, equal to:

= ¡ 1 0

·
2 log ( )

0

¸

=
1

0

·
log ( ) log ( )

0

¸
The matrices and are not, in general, equal when speci¯cation errors

are present. Thus comparing estimates of the matrices and can be useful for
detecting speci¯cation errors.

In the case of univariate GARCH models and when the parameter vector is
decomposable such as = ( 0 0)0 where are the conditional mean parameters and
are the conditional variance parameters we can show the = only under special

circumstances.
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The second derivatives matrix of the tth log-likelihood function is equal to

2
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·
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The information matrix is

= 0

·
0

¸
=

0

·
( ) ( )

2 ( )
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2
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µ
2 ( ) ( )
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·
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4

1
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µ
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3 ( ) = ¡1 [ 3 ( )] and ( ) =
1

( 2 ( ))
2 ¡1 [ 4 ( )].

Whenever it is possible to decompose the parameter vector in = ( 0 0)0,
the hessian matrix for the tth is:

=

2664
·
( 2 ( ))

¡1 ( ) ( )
0

¸
0

0

·
1
2
( 2 ( ))

¡2 2 ( ) 2 ( )
0

¸
3775

=

2664
·
( 2 ( ))

¡1 ( ) ( )
0

¸ ·
1

2 ( 2 ( ))
3

( ) 2 ( )
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¸
·

1
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3
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1
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2
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0 ( ( )¡ 1)
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The asymptotic variance-covariance matrices of the QML estimators b and b arehp
(b ¡ )

i
=

·
1X ·¡

2 ( )
¢¡1 ( ) ( )

0

¸¸¡1
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hp ³b ¡
´i

=

·
1 X ·

1

2

¡
2 ( )

¢¡2 2 ( ) 2 ( )
0

¸¸¡1
£·

1 X ·
1

4 ( 2 ( ))
2

2 ( ) 2 ( )
0 ( ( )¡ 1)

¸¸
£·

1 X ·
1

2

¡
2 ( )

¢¡2 2 ( ) 2 ( )
0

¸¸¡1
When the true conditional distribution is normal 3 ( ) = 0 and ( ) = 3. In
this case, the expressions for and coincide. The asymptotic variance-covariance
matrices of the QML estimator b reduces to:hp ³b ¡

´i
=

·
1 X ·

1

2

¡
2 ( )

¢¡2 2 ( ) 2 ( )
0

¸¸¡1
2.2 Testing in GARCH models

2.2.1 The GARCH(1,1) case

Suppose the true model is:

= + 0

2
0 = 0 + 0

2
0 ¡1 + 0

2
0 ¡1

0 jª ¡1 »
¡
0 2

0

¢
0 = ( 0 0 0 0)

0

The estimated model is:

= +

2 = + 2
¡1 +

2
¡1

= ( )0

=
X

( )

0 = ¡ 1
·P

2 ( 0)
0

¸
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( ) = ¡ 1
X 2 ( )

0

( ) =
1
"
1

2

X
=1

¡
2
¢¡2 2 2

0 +
X
=1

¡ ¡2¢
0

#

0 =
1

·
( 0) ( 0)

0

¸

( ) =
1 X

=1

0

³b´ and ³b´ are consistent estimators of and , b is the maximum likelihood
estimator of 0. When 0 is conditionally normal = . Moreover

p ³b¡ 0

´
! (0 )

can be 1 2 in the conditionally case or ¡1 2 in the general case. Robust form
of the t statistics

¡1 2 p ³b¡ 0

´
non robust form is:

1 2
p ³b¡ 0

´
The t statistics has to be compared to a standard normal distribution. De¯ne the
null hypothesis:

0 : 0 + 0 = 1

0 : ( 0) = 0 + 0 ¡ 1 = 0

De¯ne b the ML of the unrestricted model and b the estimator of the restricted
model. The statistics are:

= ¡2
h ³b ´¡ ³b ´i

=
1

0@
³b ´1A0

¡1
³b ´0@

³b ´1A
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=
1

264
0@

³b ´1A0

¡1
³b ´0@

³b ´1A
375£

240@
³b ´
0

1A ¡1
³b ´ ³b ´ ¡1

³b ´35¡1 £
240@

³b ´
0

1A ¡1
³b ´0@

³b ´1A35

=
³b ´0240@

³b ´
0

1A ¡1
³b ´ ³b ´ ¡1

³b ´0@
³b ´1A35¡1 ³b ´

=
³b ´0 240@

³b ´
0

1A ¡1
³b ´0@

³b ´1A35¡1 ³b ´
The Wald statistics ( and ) are the squares of the (robust and non robust,
respectively) t statistics for ( ) = 0.

2.3 Testing for ARCH disturbances

We want to test for the presence of ARCH e®ect. This can be done with a LM test.
The test is based upon the score under the null and information matrix under the
null. The null hypothesis is

1 = 2 = = = 0

Consider the ARCHmodel with 2 = 2 ( ), where 2 (¢) is a di®erentiable function.
=
¡
1 b2¡1 b2¡ ¢, = ( 0 1 )0 where b are the OLS residuals. Under

the null, 2 is a constant 2 = 2
0. The derivative of

2 with respect to is

2

= 20 0

where 20 is the scalar derivative of 2 ( ). Recalling that the log-likelihood function
is

=
X
=1

( ) =
X
=1

·
¡1
2
log
¡

2
¢¡ 1

2

b2
2

¸
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the derivative of with respect to is:

=
20 0

2 2

·b2
2
¡ 1
¸

the score under the null is
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20

2 2
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X 0
µb2

2
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¡ 1
¶
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2 2
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0 0

where 0 =
h³b21

2
0
¡ 1
´ ³b2

2
0
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´i0

and 0 = ( 0
1

0 ) is a (( + 1)£ ) ma-

trix. The second derivatives matrix is
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This yields the information matrix under the null:
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The LM statistic is given by
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it can be consistently estimated by

= 00 ( 0 )¡1 0 0 2

When we assume normality
¡

00 0
¢
= 2. Thus an asymptotically equivalent

statistic would be

¤ = 00 ( 0 )¡1 0 0
³

00 0
´
= 2

where 2 is the squared multiple correlation between 0 and . Since adding a
constant and multiplying by a scalar will not change the 2 of a regression, this is
also the 2 of the regression of b2 on an intercept and lagged values of b2. The
statistic will be asymptotically distributed as chi square with degrees of freedom
when the null hypothesis is true.

The test procedure is to run the OLS regression and save the residuals. Regress
the squared residuals on a constant and lags and test 2 as a 2. This will be an
asymptotically locally most powerful test.

Lee and King (1993) derive a locally most powerful (LMMP) - based score
test for the presence of ARCH and GARCH disturbances. Wald and likelihood ratio
(LR) criteria could be used to test the hypothesis of conditional homoskedasticity
e.g. against a GARCH(1,1) alternative.

The statistic associated with 0 : 1 = 1 = 0 against 1 : 1 ¸ 0 or 1 ¸ 0
with at least one strict inequality do not have a 2 distribution with two degrees of
freedom can be shown to be conservative.

2.4 Test for Asymmetric E®ects

Implicit in any volatility model is a particular news impact curve. The standard
GARCH model has news impact curve which is symmetric and centered at ¡1 = 0.
That is, positive and negative return shocks of the same magnitude produce the
same amount of volatility. Also, larger return shocks forecast more volatility at a
rate proportional to the square of the size of the return shock. If a negative return
shock causes more volatility than a positive return shock of the same size, the GARCH
model underpredicts the amount of volatility following bad news and overpredicts the
amount of volatility following good news. Furthermore, if large return shocks cause
more volatility than a quadratic function allows,, then the standard GARCH model
underpredicts volatility after a large return shock and overpredicts volatility after a
small return shock.

Engle and Ng [16] put forward three diagnostic tests for volatility models:
the Sign Bias Test, the Negative Size Bias Test, and the Positive Size Bias Test.
These tests examine whether we can predict the squared normalized residual by some
variables observed in the past which are not included in the volatility model being
used. If these variables can predict the squared normalized residual, then the variance
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model is misspeci¯ed. The sign bias test examines the impact of positive and negative
return shocks on volatility not predicted by the model under consideration. The
negative size bias test focuses on the di®erent e®ects that large and small negative
return shocks have on volatility which are not predicted by the volatilty model. The
positive size bias test focuses on the di®erent impacts that large and small positive
return shocks may have on volatility, which are not explained by the volatility model.

To derive the optimal form of these tests, we assume that the volatility model
under the null hypothesis is a special case of a more general model of the following
form:

log
¡

2
¢
= log

¡
2
0 (

0
0 0 )

¢
+ 0 (2.6)

where 2
0 (

0
0 0 ) is the volatility model hypothesized under the null, 0 is a ( £ 1)

vector of parameters under the null, 0 is a ( £ 1) vector of explanatory variables
under the null, is a ( £ 1) vector of additional parameters, is a ( £ 1) vector
of missing explanatory variables.

This form encompasses both the GARCH and EGARCH models. For the
GARCH(1,1) model

2
0 (

0
0 0 ) =

0
0 0

0 ´
£
1 2

¡1
2
¡1
¤0

0 ´ [ ]0

= [ ¤ ¤ ¤]0

=

·
log
¡

2
¡1
¢ ¡1

¡1

µ j ¡1j
¡1
¡
p
2

¶¸0
The encompassing model is

log
¡

2
¢
= log

£
+ 2

¡1 +
2
¡1
¤
+ ¤ log

¡
2
¡1
¢
+ ¤ ¡1

¡1
+ ¤

µ j ¡1j
¡1
¡
p
2

¶

when = = 0 is an EGARCH(1,1) while with ¤ = ¤ = ¤ = 0 is a GARCH(1,1)
model.

The null hypothesis is = 0. Let be the normalized residual corresponding

to observation under the volatility model hypothesized. That is, ´ . The LM

test statistic for 0 : = 0 in (2.6) is a test of = 0 in the auxiliary regression

2 = ¤0
0 0 +

¤0 + (2.7)
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where ¤
0 ´ ¡2

0

µ
2

0

¶
, ¤ ´ ¡2

0

µ
2
¶
. Both

2

0

and
2

are evaluated at

= 0 and 0 (the maximum likelihood estimator of 0 under 0). If the parameters
restrictions are met, the right-hand side variables in (2.7) should have no explanatory
variables power at all. Thus, the test is often computed as

= 2

where 2 is the squared multiple correlation of (2.7), and is the number of obser-
vations in the sample¤. The LM statistic is aasymptotically distributed as chi-square
with degrees of freedom when the null hypothesis is true, where is the number

of parameter restrictions. Under the encompassing model (2.6),

µ
2
¶
evaluated

under the null is equal toy 2
0 , hence ¤ = . The regression actually involves

regressing 2 on a constant ¤
0 and . The variables in are ¡1, ¡

¡1 ¡1 and
+
¡1 ¡1. The optimal form for conducting the sign bias test is:

2 = + 1
¡
¡1 +

0 ¤
0 +

where

¡
¡1 =

½
1 ¡1 0
0

the regression for the negative size bias test is:

2 = + 2
¡
¡1 ¡1 + 0 ¤

0 +

the positive size bias test statistic:

2 = + 3
+
¡1 ¡1 + 0 ¤

0 +

+
¡1 =

½
1 ¡1 0
0

¤However, for highly nonlinear models, the numerical optimization algorithm generally does not
guarantee exact orthogonality of 2 to ¤

0 . Engle and Ng ([16]) propose to regress
2 on 0 alone,

and use the residuals from this regression (which are now guaranteed to be orthogonal to 0 ) in
place of 2.

yIn fact,

2 = 2
0

¡ 0
0 0

¢
exp

¡ 0 ¢
2

= 2
0 exp

¡ 0 ¢
under the null, = 0,

2

= 2
0 .
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The t-ratios for 1, 2 and 3 are the sign bias, the negative size bias, and the positive
size bias test statistics, respectively. The joint test is the LM test for adding the three
variables in the variance equation (2.6) under the maintained speci¯cation:

2 = + 1
¡
¡1 + 2

¡
¡1 ¡1 + 3

+
¡1 ¡1 + 0 ¤

0 +

The test statistics is 2. If the volatility model is correct then 1 = 2 = 3 = 0,
= 0 and is i.i.d. If ¤

0 is not included the test will be conservative; the size will
be less than or equal to the nominal size, and the power may be reduced.
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Chapter 3

MULTIVARIATE GARCH MODELS

3.1 Introduction

The extension from a univariate GARCH model to an N -variate model requires al-
lowing the conditional variance-covariance matrix of the N -dimensional zero mean
random variables depend on the elements of the information set.

Let f g be a sequence of ( £ 1) i.i.d. random vector with the following
characteristics:

[ ] = 0

[ 0] =

» (0 )

with continuous density function. Let f g be a sequence of ( £ 1) random vectors
generated as:

=
1 2

where

¡1 ( ) = 0

¡1 ( 0) =

where is a matrix ( £ ) positive de¯nite and measurable with respect to
the information set ª ¡1, that is the -¯eld generated by the past observations:
f ¡1 ¡2 g. The parametrization of as a multivariate GARCH, which means
as a function of the information set ª ¡1, allows each element of to depend on
q lagged of the squares and cross-products of , as well as p lagged values of the
elements of , and a ( £ 1) vector of dummies. So the elements of the covari-
ance matrix follow a vector of ARMA process in squares and cross-products of the
disturbances.
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3.2 Vech representation

Let vech denote the vector-half operator, which stacks the lower triangular elements
of an £ matrix as an [ ( + 1) 2]£ 1 vector. Since the conditional covariance
matrix is symmetric, ( ) contains all the unique elements in . Following
Bollerslev et al. [6], a natural multivariate extension of the univariate GARCH(p,q)
model is

( ) = +
X
=1

¤ ¡
¡ 0

¡
¢
+
X
=1

¤ ( ¡ )

= + ¤ ( ) ( 0) + ¤ ( ) ( ) (3.1)

is a [ ( + 1) 2]£1 vector, the ¤ and ¤ are [( ( + 1) 2)£ ( ( + 1) 2)]
matrices. This general formulation is termed vec representation by Engle and Kroner
[15]. The number of parameters is

£
( + 1) 2 + ( + ) [ ( + 1) 2]2

¤
. Even

for low dimensions of N and small values of p and q the number of parameters is
very large; for = 5 and = = 1 the unrestricted version of (3.1) contains 465
parameters.

For any parametrization to be sensible, we require that be positive de¯nite
for all values of in the sample space in the vech representation this restriction can
be di±cult to check, let alone impose during estimation.

3.2.1 Diagonal vech model

A natural restriction that was ¯rst used in the ARCH context by Engle, Granger
and Kraft [14] and in the GARCH context by Bollerslev et al [6] is the diagonal
representation, in which each element of the covariance matrix depends only on past
values of itself and past values of . In the diagonal model the ¤ and ¤ matrices
are all taken to be diagonal. For = 2 and = = 1, the diagonal model is written
as: 24 11

21

22

35 =

24 1

2

3

35+
24 ¤

11 0 0
0 ¤

22 0
0 0 ¤

33

3524 2
1 ¡1
1 ¡1 2 ¡1
2
2 ¡1

35
+

24 ¤
11 0 0
0 ¤

22 0
0 0 ¤

33

3524 11 ¡1
21 ¡1
22 ¡1

35
Thus the ( ) element in depends on the corresponding ( ) element in

¡1 0
¡1 and ¡1. This restriction reduces the number of parameters to [ ( + 1) 2] (1 + + ).

This model does not allow for causality in variance, co-persistence in variance and
asymmetries.
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3.3 BEKK representation

Engle and Kroner ([15]) propose a parametrization that impose positive de¯niteness
restrictions. Consider the following model

= 0 +
X
=1

X
=1

¡ 0
¡

0 +
X
=1

X
=1

¡ 0 (3.2)

where , and . The intercept matrix is decomposed into 0, where is a
lower triangular matrix. Without any further assumption 0 is positive semidef-
inite. This representation is general that it includes all positive de¯nite diagonal
representations and nearly all positive de¯nite vech representations. For exposition
simplicity we will assume that = 1:

= 0 +
X
=1

¡ 0
¡

0 +
X
=1

¡ 0 (3.3)

To illustrate the BEKK model, consider the simple GARCH(1,1) model:

= 0 + 1 ¡1 0
¡1

0
1 + 1 ¡1 0

1 (3.4)

Proposition 10 (Engle and Kroner [15]) Suppose that the diagonal elements in
are restricted to be positive and that 11 and 11 are also restricted to be positive.
Then if = 1 there exists no other , 1, 1 in the model (3.4) that will give an
equivalent representation.

The purpose of the restrictions is to eliminate all other observationally equiv-
alent structures. For example, as relates to the term 1 ¡1 0

¡1
0
1 the only other

observationally equivalent structure is obtained by replacing 1 by ¡ 1. The restric-
tion that 11 ( 11) be positive could be replaced with the condition that ( ) be
positive for a given and , as this condition is also su±cient to eliminate ¡ 1 from
the set of admissible structures.

In the bivariate case the BEKK becomes

= 0 +
·

11 12

21 22

¸ ·
2
1 ¡1 1 ¡1 2 ¡1
2 ¡1 1 ¡1 2

2 ¡1

¸ ·
11 12

21 22

¸0
+

·
11 12

21 22

¸ ·
11 ¡1 12 ¡1
21 ¡1 22 ¡1

¸ ·
11 12

21 22

¸0
For what concerns the positive de¯niteness of , we have the following result.

Proposition 11 (Engle and Kroner [15]) (Su±cient condition) In a GARCH(p,q)
model, if 0, ¡1 ¡ +1 are all positive de¯nite, then the BEKK parametrization
(with = 1) yields a positive de¯nite for all possible values of if is a full
rank matrix or if any = 1 is a full rank matrix (the intersection of the
null spaces of 0 and 0 = 1 is null).
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Proof. For simplicity consider the GARCH(1,1) model. The BEKK parame-
terization is

= 0 ++ 1 ¡1 0
¡1

0
1 + 1 ¡1 0

1

The proof proceeds by induction. First is p.d. for = 1: The term 1 0
0
0

0
1 is

positive semide¯nite because 0
0
0 is positive semide¯nite. Also if the null spaces of

the matrices of and 1 intersect only at the origin, that is at least one of two is
full rank then

0 + 1 0
0
1

is positive de¯nite. This is true if or 1 has full rank. To show that the null space
condition is su±cient 0 + 1 0

0
1 is p.d. if and only if

0 ( 0 + 1 0
0
1) 0 8 6= 0

or

( 0 )0 ( 0 ) +
³

1 2
0

0
1

´0 ³
1 2
0

0
1

´
0 8 6= 0 (3.5)

where 0 =
1 20
0

1 2
0 and

1 2
0 is full rank. De¯ning ( ) to be the null space of

the matrix , (3.5) is true if and only if

( 0) \
³

1 2
0

0
1

´
= ;³

1 2
0

0
1

´
= ( 0

1) because
1 2
0 is full rank. This implies that 0 + 1 0

0
1

is positive de¯nite if and only if ( 0) \
³

1 2
0

0
1

´
= ;. Now suppose that is

positive de¯nite for = . Then

+1 =
0 + 1

0 0
1 + 1

0
1

is positive de¯nite if and only if, given that 1
0 0

1 is positive semide¯nite, the null
space condition holds, because is positive de¯nite by the induction assumption.

We now examine the relationship between the BEKK and vech parametriza-
tions. The mathematical relationship between the parameters of the two models can
be found simply vectorizing the equation (3.3):

( ) = ( 0) +
X
=1

( ¡ 0
¡

0) +
X
=1

( ¡ 0)



BEKK representation 53

where () is an operator such that given a matrix ( £ ), ( ) is a ( 2 £ 1)
vector. The () satis¯es

( ) = ( 0 ­ ) ( )

then

( ) = ( 0) +
X
=1

( ­ ) ( ¡ 0
¡ )

+
X
=1

( ­ ) ( ¡ )

For ( £ ) symmetric, then ( ) contains precisely the ( + 1) 2 distinct
elements of and the elements of ( ) are those of ( ) with some repetitions.
Hence there exists a unique 2 £ ( + 1) 2 which transforms, for symmetric ,

( ) into ( ). This matrix is called the duplication matrix and is denoted
:

( ) = ( )

where is the duplication matrix.

( ) = ( 0) +
X
=1

( ­ ) ( ¡ 0
¡ )

+
X
=1

( ­ ) ( ¡ )

If is a full column rank matrix we can de¯ne the generalized inverse of as:

+ = ( 0 )
¡1 0

that is a ( ( + 1) 2)£ ( 2) matrix, where

+ =

This implies that premultiplying by +

( ) = ( 0) + +

ÃX
=1

( ­ )

!
( ¡ 0

¡ )

+ +

ÃX
=1

( ­ )

!
( ¡ )
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One implication of this result is that the vech model implied by any given BEKK
model is unique, while the converse is not true. The transformation from a vech model
to a BEKK model (when it exists) is not unique, because for a given ¤

1 the choice
of 1 is not unique. This can be seen recognizing that ( ­ ) = (¡ ­¡ ) so
while ¤ = + ( ­ ) is unique, the choice of is not unique. It can also be
shown that all positive de¯nite diagonal vech models can be written in the BEKK
framework.

Given diagonal matrix, then + ( ­ ) is also diagonal, with diag-
onal elements given by (1 · · · ) (See Magnus [22]).

3.3.1 Covariance Stationarity

Given the vech model

( ) = + ¤ ( ) ( 0) + ¤ ( ) ( )

the necessary and su±cient condition for covariance stationary of f g is that all the
eigenvalues of ¤ (1) + ¤ (1) are less than one in modulus. But de¯ning ¤ (1) =
+

µP
=1

( ­ )

¶
and ¤ (1) = +

µP
=1

( ­ )

¶
. This implies also that

in the BEKK model, f g is covariance stationary if and only if all the eigenvalues of
+

µP
=1

( ­ )

¶
+ +

µP
=1

( ­ )

¶
are less than one in modulus. Let

1 the eigenvalues of , the eigenvalues of +

µP
=1

( ­ )

¶
are

(1 · · · ). (Magnus, [22])
For a GARCH(p,q) in vech form, the unconditional covariance matrix, when

it exists, is given by¤

( ( 0)) = ( ( 0)) = [ ¤ ¡ ¤ (1)¡ ¤ (1)]¡1

and in the BEKK modely

( ( 0)) =
£

¤ ¡ + ( 1 ­ 1) ¡ + ( 1 ­ 1)
¤¡1

( 0)

¤Given that

( 0) = ( ) + ( )

with ( ( )) = ( ( )) = 0

( 0 ) = + ¤
1

¡¡
¡1 0

¡1
¢¢
+ ¤

1

£ ¡
¡1 0

¡1
¢¡ ( ¡1)

¤
( ( 0)) = + ¤

1

¡ ¡
¡1 0

¡1
¢¢
+ ¤

1

¡ ¡
¡1 0

¡1
¢¢

yGiven that

0 = +
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¤ = ( + 1) 2. The diagonal vech model is stationary if and only if the sum
¤ + ¤ 1 for all . In the diagonal BEKK model the covariance stationary condition
is that 2 + 2 1. Only in the case of diagonal models the stationarity properties
are determined solely by the diagonal elements of the and matrices.

3.4 Constant Correlations Model

In the constant correlations model put forward by Bollerslev ([3]) the time-varying
conditional covariances are parametrized to be proportional to the product of the
corresponding conditional standard deviations. This assumption greatly simpli¯es
the computational burden in estimation, and conditions for to be positive de¯nite
a.s for all are easy to impose. The model assumptions are:

¡1 [ ] = 0

¡1 [ 0 ] =

f g = 2

f g = = 6=
Let denote the ( £ ) diagonal matrix with the conditional variances along the
diagonal, f g = 2 . Let ¡ denote the matrix of constant correlations with ¡
element given by

f¡ g = f g
h
f g f g

i¡1 2
= 1

the model assumes ¡ = ¡

=
1 2
¡

1 2

with ( ) = 0

( 0) = ( 0) + ( 1 ­ 1)
¡

¡1 0
¡1
¢
+ ( 1 ­ 1)

£ ¡
¡1 0

¡1
¢¡ ( ¡1)

¤
[ ( 0)] = ( 0) + [( 1 ­ 1) + ( 1 ­ 1)]

£ ¡
¡1 0

¡1
¢¤

[ ( 0)] = [ 2 ¡ ( 1 ­ 1)¡ ( 1 ­ 1)]
¡1 ( 0)

or in vech representation as

( ( 0)) = ( 0) + ( 1 ­ 1)
¡ ¡

¡1 0
¡1
¢¢
+ ( 1 ­ 1)

¡ ¡
¡1 0

¡1
¢¢
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=

264 1 ¢ ¢ ¢ 0
...

. . .
...

0 ¢ ¢ ¢

375
26664
1 12 1

21 1
...

...
...

. . . ¡1
1 ¡1 1

37775
264 1 ¢ ¢ ¢ 0
...

. . .
...

0 ¢ ¢ ¢

375

When = 2

=

·
1 0
0 2

¸ ·
1 12

21 1

¸ ·
1 0
0 2

¸
=

·
2
1 12 1 2

12 1 2
2
2

¸
If the conditional variances along the diagonal in the matrices are all positive,
and the conditional correlation matrix ¡ is positive de¯nite, the sequence of condi-
tional covariance matrices f g is guaranteed to be positive de¯nite a.s. for all .
Furthermore the inverse of is given by

¡1 = ¡1 2
¡¡1 ¡1 2

When calculating the log-likelihood function only one matrix inversion is required for
each evaluation.

3.5 Factor ARCH model

The Factor GARCH model, introduced by Engle et al. ([17]), can be thought of as an
alternative simple parametrization of the BEKK model. Suppose that the ( £ 1)
has a factor structure with factors given by the £ 1 vector and a time

invariant factor loadings given by the £ matrix :

= + (3.6)

Assume that the idiosyncratic shocks have conditional covariance matrix ª which
is constant in time and positive semide¯nite, and that the common factors are char-
acterized by

¡1 ( ) = 0

¡1 ( 0) = ¤

¤ = ( 1 ) and positive de¯nite. The conditioning set is f ¡1 ¡1 1 1g.
Also suppose that ( 0) = 0. The conditional covariance matrix of equals

¡1 ( 0) = = ª+ ¤ 0 = ª+
X
=1

0
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where denotes the th column in . Thus, there are statistics which determine
the full covariance matrix. Forecasts of the variances and covariances or of any
portfolio of assets, will be based only on the forecasts of these statistics.

There exists factor-representing portfolios with portfolio weights that are or-
thogonal to all but one set of factor loadings:

= 0

0 =

½
1 =

0

the vector of factor-representing portfolios is

= ©0

where the columns of matrix © are the vectors. The conditional variance of is
given by

¡1 ( ) = 0 ¡1 ( 0) = 0

= 0 (ª + ¤ 0)
= +

where = 0 ª . The portfolio has the exact time variation as the factors, which
is why they are called factor-representing portfolios. In order to estimate this model,
the dependence of the 's upon the past information set must also be parametrized:

´ 0 = ¡1 ( ) = +

So we get that

X
=1

0 =
X
=1

0 +
X
=1

0

X
=1

0 =
X
=1

0 ¡
X
=1

0

= ª+
X
=1

0 = ª+
X
=1

0 ¡
X
=1

0

= ª¤ +
X
=1

0
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where ª¤ =
µ
ª¡ P

=1

0
¶
. The simplest assumption is that there is a set of

factor-representing portfolios with univariate GARCH(1,1) representations. The con-
ditional variance follows a GARCH(1,1) process

= + ( 0 ¡1)
2
+ ¡2

¡
2
¡1
¢

= + 0 ¡ ¡1 0
¡1
¢

+ ¡2 [( 0 ) ( 0 )]

= + 0 ¡ ¡1 0
¡1
¢

+ [ 0 ¡2 ( 0) ]

= + 0 ¡ ¡1 0
¡1
¢

+ [ 0 ¡1 ]

(A lezione si era assunto = ) The conditional variance-covariance matrix of
can be written as

= ª¤ +
X
=1

0

= ª¤ +
X
=1

0 © +
£ 0 ¡ ¡1 0

¡1
¢ ¤

+ [ 0 ¡1 ]
ª

=

Ã
ª¤ +

X
=1

0
!
+
X
=1

0 © £ 0 ¡ ¡1 0
¡1
¢ ¤

+ [ 0 ¡1 ]
ª

= ¡ +
X
=1

0

where ¡ = ª¤ +
P
=1

0 , therefore

= ¡ +
X
=1

£ 0 ¡ ¡1 0
¡1
¢ 0 ¤+X

=1

[ 0 ¡1 0 ]

so that the factor GARCH model is a special case of the BEKK parametrization.
Estimation of the factor GARCH model is carried out by maximum likelihhod esti-
mation. It is often convenient to assume that the factor-representing portfolios are
known a priori.
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3.6 Asymmetric Multivariate GARCH-in-mean model

A general multivariate model can be written as:

= + ¦ ( ) ¡1 +© ¡1 + ¤ ( ) + (3.7)

where is a ( £ 1) vector of weakly stationary variables (that is, asset returns),
¦ ( ) = ¦1 + ¦2 + ¢ ¢ ¢ + ¦ ¡1, ¡1 contains predetermined variables. is the
vector of innovation with respect to the information set formed exclusively of past
realizations of . ¤ is a ( £ ( + 1) 2):

= ¡1 ( 0)

= 0 +
X
=1

( ¡ + ) ( ¡ + )0 0 +
X
=1

¡ 0 (3.8)

We can consider a multivariate generalization of the size e®ect and sign e®ect:

= 0 + 1 ¡1 0
¡1

0
1 + 1 ¡1 0

1 + ¡1 0
¡1

0 + ¤
1 ¡1 0

¡1
¤0

where = j j ¡ j j, with =
p

and

¤ =

26664
( 1 ¡1 0) 11 0 0

0
. . .

...
...

. . . 0
0 0 ( ¡1 0)

37775
When = 2

¡1 0
¡1 =

· ¯̄
1 ¡1

p
11 ¡1

¯̄¡ ¯̄
1 ¡1

p
11 ¡1

¯̄¯̄
2 ¡1

p
22 ¡1

¯̄¡ ¯̄
2 ¡1

p
22 ¡1

¯̄ ¸ · ¯̄ 1 ¡1 p 11 ¡1
¯̄¡ ¯̄

1 ¡1
p

11 ¡1
¯̄¯̄

2 ¡1
p

22 ¡1
¯̄¡ ¯̄

2 ¡1
p

22 ¡1
¯̄ ¸0

=

·
(j 1 j ¡ j 1 j)2 (j 1 j ¡ j 1 j) (j 2 j ¡ j 2 j)
(j 2 j ¡ j 2 j) (j 1 j ¡ j 1 j) (j 2 j ¡ j 2 j)2

¸

¤
1 ¡1 0

¡1
¤0 =

· ¤2
11

2
1 ¡1

¤
11

¤
22 1 ¡1 2 ¡1

¤
11

¤
22 1 ¡1 2 ¡1 ¤2

22
2
2 ¡1

¸
=

·
( 1 ¡1 0) 2

11
2
1 ¡1 12 11 22 1 ¡1 2 ¡1

12 11 22 1 ¡1 2 ¡1 ( 2 ¡1 0) 2
22

2
2 ¡1

¸

12 = ( 1 ¡1 0) ( 2 ¡1 0)
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3.7 Estimation procedure

Given the model (3.7)-(3.8), the log-likelihood function for f 1g obtained
under the assumption of conditional multivariate normality is:

( 1; ) = ¡1
2

"
ln (2 ) +

X
=1

¡
ln j j+ 0 ¡1 ¢#

The function corresponds directly to the conditional likelihood function for the uni-
variate ARCH model, used in maximum likelihood or quasi-maximum likelihood es-
timation. Because maximum likelihood under normality is so widely used, it is im-
portant to investigate its properties in a general setting. In general, the assumption
of conditional normality can be quite resctrictive. The symmetry imposed under nor-
mality is di±cult to justify, and the tails of even conditional distributions often seem
fatter than that of normal distribution.

Let f( ) : = 1 2 g be a sequence of observables random vectors with
( £ 1) and ( £ 1). The vector contains the "endogenous" variables and

contains contemporaneous "exogenous" variables. Let = ( ¡1 ¡1 1 1).
The conditional mean and variance functions are jointly parametrized by a

¯nite dimensional vector :

f ( ) 2 £g

f ( ) 2 £g

where £ is a subset of and and are known functions of and .
In the analysis, the validity of most of the inference procedures is proven under

the null hypothesis that the ¯rst two conditional moments are correctly speci¯ed, for
some 0 2 £,

( j ) = ( 0) (3.9)

( j ) = ( 0) = 1 2 (3.10)

The procedure most often used to estimate 0 is maximization of a likelihood function
that is constructed under the assumption that j » ( ). The approach
taken here is the same, but the subsequent analysis does not assume that has a
conditional normal distribution.

For observation the quasi-conditional log-likelihood is

( ; ) = ¡
2
ln (2 )¡ 1

2
ln j ( )j ¡ 1

2
( ¡ ( ))0 ¡1 ( ) ( ¡ ( ))



Estimation procedure 61

Letting ( 0) ´ ¡ ( ) denote the £1 residual function, and in amore
concise notation

( ) = ¡
2
ln (2 )¡ 1

2
ln j ( )j ¡ 1

2
0 ( ) ¡1 ( ) ( ) (3.11)

( ) =
X
=1

( )

If ( ) and ( ) are di®erentiable on £ for all relevant , and if ( )
is nonsingular with probability one for all 2 £, then the di®erentiation of (3.11)
yields the (1£ ) score function ( ):

( )0 = r ( )0 ¡r ( )0 ¡1 ( ) ( ) +
1

2
r ( )0

£ ¡1 ( )­ ¡1 ( )
¤ £

( ) ( )0 ¡ ( )
¤

where r ( ) is the ( £ ) derivative of ( ) and r ( ) is the ( 2 £ )
derivative of ( ). If the ¯rst conditional two moments are correctly speci¯ed, that
is if the (3.9) holds then the true error vector is de¯ned as 0 ´ ( 0) = ¡ ( 0)
and ( 0 j ) = 0. If in addition, (3.10) holds then ( 0 00 j ) = ( 0). It
follows that under correct speci¯cation of the ¯rst two conditional moments of
given :

[ ( 0) j ] = 0

The score evaluated at the true parameter is a vector of martingale di®erence with
respect to the ¡ f ( ) : = 1 2 g. This result can be used to establish
weak consistency of the quasi-maximum likelihood estimator (QMLE).

For robust inference we also need an expression for the hessian ( ) of
( ). De¯ne the ( £ ) positive semide¯nite matrix ( 0) = ¡ [r ( 0) j ] =
[¡ ( 0) j ]. A straightforward calculation shows that, under (3.9) and (3.10),

( 0) = r ( 0)
0 ¡1 ( 0)r ( 0)

+
1

2
r ( )0

£ ¡1 ( )­ ¡1 ( )
¤r ( )

When the normality assumption holds the matrix ( 0) is the conditional informa-
tion matrix. However, if does not have a conditional normal distribution then

[ ( 0) j ] is generally not equal to ( 0) and the information matrix equality
is violated.

The QMLE has the following properties:£
0¡1 0 0¡1¤¡1 2p ³b ¡ 0

´
! (0 )
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where

0 ´ ¡ 1
X
=1

[ ( 0)] =
1X

=1

[ ( 0)]

and

0 ´ £ ¡1 2 ( 0)
¤
=
1X

=1

£
( 0)

0 ( 0)
¤

in addition

b ¡ 0 ! 0

b ¡ 0 ! 0

The matrix b¡1 b b¡1 is a consistent estimator od the robust asymptotic covariance
matrix of

p ³b ¡ 0

´
. In practice, one treats b as if it is normally distributed

with mean 0 and variance b¡1 b b¡1 . Under normality, the variance estimator

can be replaced by b¡1 (Hessian form) or b¡1 (outer product of the gradient
form).

We can derive a robust form for Wald statistics for testing hypotheses about

0. Assume that the null hypothesis can be stated as

0 : ( 0) = 0

where : £! R is continuously di®erentiable on (£) and . Let ( ) =
r ( ) be the ( £ ) gradient of on (£). If 0 2 (£) and ( ( 0)) =
then the Wald statistic

=
³b ´0 · ³b ´ b¡1 b b¡1 ³b ´0¸¡1 ³b ´!

0

2
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