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FMBF: Computer lab 3 
 

This session covers ARCH and GARCH models. We will see how to estimate the various models 

and perform appropriate diagnostic tests to assist in choosing a preferred model. 

 

We will work with a dataset comprising exchange rate data for the period 2 January 1980 to 21 May 

1987. The contents of this dataset are listed in following table. 

Variable Description 

BP US$ - British Pound 

CD US$ - Canadian Dollar 

DM US$ - Deutsche Mark 

JY US$ - Japanese Yen 

SF US$ - Swiss Franc 

 

 

ARCH/GARCH Modeling 
We will initially test for ARCH effects. Subsequently, we will construct ARCH/GARCH models. 

Finally, we will make forecasting based on the model we constructed. 
 
Testing for ‘ARCH effects’ 

1. Download the data ‘garch.xls’ from duo and load into EViews. 

2. To calculate exchange rate returns, dlog all of the exchange rate series. Name the newly created 

variables as rbp, rcd, rdm, rjy, and rsf.  

3. Plot the daily change data (exchange rate returns) in EViews; what conclusions do you come to? 

For example, the line graph of ‘rdm’ calculated as dlog(DM) is shown as follows. 
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4. Identify an appropriate ARMA model for each of the exchange rate return series by following the 

Box–Jenkins methodology (Please check Computer lab 1). 

5. We use ‘rdm’ as an example to test ARCH effects. Estimate a AR(1) model for rdm. Then, in the 

Equation window, select View > Residual Diagnostics > Heteroskedasticity Test 

 
 

Select ARCH, and Input ‘6’ in the ‘Number of lags’ box. We just show an example of test with 6 

lagged terms. Please check the note of first computer lab on how to choose optimum number of 

lags. 
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Note:  

A test for the presence of ARCH in the residuals is calculated by regressing the squared residuals 

on a constant and p lags, where p is set by the user. Therefore, to test the ARCH effects, we 

should firstly estimate a linear model to get residuals. 

 

The AR(1) model has been chosen entirely arbitrarily at this stage to show a example. However, 

you should carefully choose the type and order of the model in practice, since the variance is 

measured around the mean and therefore any mis-specification in the mean is likely to lead to a 

mis-specified variance. 

 

 

6. Finally, we get the results. The null hypothesis of the test is that there is no ARCH effect. Both 

F-test and Lagrange multiplier test (Chi-Square) show significant results, indicating that ARCH 

effects exist in ‘rdm’ series. 
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Estimating ARCH/GARCH models 

In this section, we will use EViews to estimate ARCH model, the basic GARCH model, asymmetric 

GARCH models (GJR and EGARCH), and GARCH-in-mean model. 

 

ARCH 

1. Estimate an appropriate ARCH model based on your results from the previous step. To do this in 

EViews, go to ‘Quick > Estimate Equation’. Then, select ‘ARCH – Autoregressive Conditional 

Heteroskedasticity’. 

2. In ‘Equation Estimation’ window, input your identified ARMA model in the ‘Mean equation’ 

box. Here, we use AR(1) model as an example. In practice, please carefully identify an 

appropriate ARMA model. In the ‘Variance and distribution specification’ box, input the 

appropriate specification. For example, if you want to estimate a ARCH(6) model, you should 

input ‘6’ for ARCH order, and ‘0’ for GARCH order. 
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3. Analyze the results from your model. In particular, you will want to check if any of the 

parameters are insignificant, and if so consider a more parsimonious specification. It may be that 

you want to perform a Wald test if you have more than one insignificant parameter. This can be 

done by View > Coefficient Diagnostics > Wald – Coefficient Restrictions. For more information 

on Wald test, please check computer lab 1. 
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GARCH 

1. We will now see if it is advantageous to formulate a more parsimonious GARCH(1,1) model. 

Using the same AR specification identified above (we still use AR(1) model as an example) as 

the mean equation, go to the ‘Equation Estimation’ window, but this time specify both ARCH 

and GARCH order as ‘1’, so we have a GARCH(1,1) model. 

 

2. Interpret the results. Consider if you can improve the model with a change in the ARMA 

structure. 
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GJR-GARCH 

1. Estimate a GJR-GARCH(1,1) model using the ARMA specification you identified above as the 

mean equation (we still use AR(1) model as an example). To do this, open ‘Equation Estimation’ 

window, and change the ‘Threshold order’ number from 0 to 1. 

 

2. Interpret the results. 
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Note: 

Due to Glosten, Jaganathan and Runkle 

 
where It-1 = 1 if ut-1 < 0 

    = 0 otherwise 

For a leverage effect, we would see γ > 0 

We require α1 + γ ≥ 0 and α1 ≥ 0 for non-negativity. 

 

 

 

EGARCH 

1. Estimate an EGARCH(1,1) model using the ARMA specification you identified above as the 

mean equation (we still use AR(1) model as an example). To do this, open ‘Equation Estimation’ 

window, and select ‘EGARCH’ in the ‘Variance and distribution specification’ box. 

 

 

 

σt
2 = α0 + α1

2
1−tu +βσt-1

2+γut-1
2It-1 
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2. Interpret results. 

 
Note: 

Suggested by Nelson (1991). The variance equation is given by 

 

Advantages of the model: 

Since we model the log(σt
2), then even if the parameters are negative, σt

2 will be positive. 

We can account for the leverage effect: if the relationship between volatility and returns is 

negative, γ will be negative. 
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GARCH-in-mean 

1. Estimate a GARCH(1,1)-in-Mean using the ARMA specification you identified above as the 

mean equation (we still use AR(1) model as an example). To do this, open ‘Equation Estimation 

window’, and select appropriate option in the ‘ARCH-M’ box to add the conditional standard 

deviation, the conditional variance, or the log of the conditional variance to the mean equation. 

 
2. Interpret the results.  
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In above results, the conditional standard deviation (@SQRT(GARCH)) is added in the mean 

equation. 

 

In above results, the conditional variance (GARCH) is added in the mean equation. 

 

In above results, the log of the conditional variance (LOG(GARCH)) is added in the mean 

equation. 
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Note: 

Engle, Lilien and Robins (1987) suggested the ARCH-M specification. A GARCH-M model 

would be: 

 

 	
   	
  
If δ is positive and statistically significant, then increased risk, given by an increase in the 

conditional variance, leads to a rise in the mean return. Thus δ can be interpreted as a risk 

premium. 

In our case, the estimated parameter on the mean equation has a positive sign and is statistically 

significant. We would thus conclude that for the series ‘rdm’, there is a positive feedback from 

the conditional variance to the conditional mean. In other words, higher risk lead to higher 

returns. 

 

 

Forecasting from GARCH models 

We will use preferred ARMA(p,q)-GARCH(1,1) model (we use AR(1)-GARCH(1,1) as an example) 

to make forecasting.  

1. We use only a sub-sample of available data for model estimation. Suppose, for example, we 

stopped the estimation of the GARCH(1,1) model for the series ‘rdm’ at 21st May 1986 so as to 

keep the last one year of data for forecasting. 

 

yt = µ + δσt-1+ ut   , ut ∼ N(0,σt
2)  

σt
2 = α0 + α1

2
1−tu +βσt-1

2 
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2. In the ‘Equation’ window, click on the ‘Forecast’. In the ‘Forecast’ window, adjust the ‘Forecast 

sample’ as ‘5/22/1986 5/21/1987’. We can choose to produce static (a series of rolling 

single-step-ahead) or dynamic (multiple-step-ahead) forecasts. 

 
3. Finally, we get following results. Examine the forecasts from your model. 

 
Dynamic forecasts of the conditional variance 
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Static forecasts of the conditional variance 
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